Synthesis and Biological Evaluation of 2-Hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(Alkoxycarbonyl)amino]benzoates

A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against t...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết thư mục
Tác giả chính: Jan T, engler, Iva, Kapustíková, Matúš, Peško
Ngôn ngữ:English
Năm xuất bản: Hindawi Limited 2018
Chủ đề:
Truy cập Trực tuyến:http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3997
Tags: Thêm thẻ
Không có thẻ, Hãy là người đầu tiên gắn thẻ bản ghi này!
Mô tả
Tóm tắt:A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against two mycobacterial species. 2-Hydroxy-3-[2-(2,6-dimethoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, 2-hydroxy-3-[2-(4-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, and 2-hydroxy-3-[2-(2-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride showed higher activity against M. avium subsp. paratuberculosis and M. intracellulare than the standards ciprofloxacin, isoniazid, or pyrazinamide. Cytotoxicity assay of effective compounds was performed using the human monocytic leukaemia THP-1 cell line. Compounds with predicted amphiphilic properties were also tested for their effects on the rate of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. All butyl derivatives significantly stimulated the rate of PET, indicating that the compounds can induce conformational changes in thylakoid membranes resulting in an increase of their permeability and so causing uncoupling of phosphorylation from electron transport.