A Novel Choice Procedure of Magnetic Component Values for Phase Shifted Full Bridge Converters with a Variable Dead-Time Control Method

Magnetic components are important parts of the phase shifted full bridge (PSFB) converter. During the dead-time of switches located in the same leg, the converter can achieve zero-voltage-switching (ZVS) by using the energies stored in magnetic components to discharge or charge the output capacitanc...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết thư mục
Tác giả chính: Lei Zhao (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China), Haoyu Li (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China), Yanxue Yu (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China), Yantian Wang (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)
Định dạng: Other
Ngôn ngữ:en_US
Năm xuất bản: MDPI AG 2018
Chủ đề:
Truy cập Trực tuyến:http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3804
Tags: Thêm thẻ
Không có thẻ, Hãy là người đầu tiên gắn thẻ bản ghi này!
Mô tả
Tóm tắt:Magnetic components are important parts of the phase shifted full bridge (PSFB) converter. During the dead-time of switches located in the same leg, the converter can achieve zero-voltage-switching (ZVS) by using the energies stored in magnetic components to discharge or charge the output capacitances of switches. Dead-time is usually calculated under a given set of pre-defined load condition which results in that the available energies are insufficient and ZVS capability is lost at light loads. In this paper, the PSFB converter is controlled by variable dead-time method and thus full advantage can be taken of the energies stored in magnetic components. Considering that dead-time has a great effect on ZVS, the relationship between available energies and magnetic component values is formulated by analyzing the equivalent circuits during dead-time intervals. Magnetic component values are chosen based on such relationship. The proposed choice procedure can make the available energies greater than the required energies for ZVS operation over a wide range of load conditions. Moreover, the burst mode control is adopted in order to reduce the standby power loss. Experimental results coincide with the theoretical analysis. The proposed method is a simple and practical solution to extend the ZVS range.