Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage

In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we pro...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết thư mục
Tác giả chính: Boettle, M., Rybski, D., Kropp, J. P.
Ngôn ngữ:English
Năm xuất bản: Copernicus Publications 2018
Chủ đề:
Truy cập Trực tuyến:http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3684
Tags: Thêm thẻ
Không có thẻ, Hãy là người đầu tiên gắn thẻ bản ghi này!
id oai:localhost:DHQB_123456789-3684
recordtype dspace
spelling oai:localhost:DHQB_123456789-36842018-10-22T08:43:33Z Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage Boettle, M. Rybski, D. Kropp, J. P. Technology Anthropology Recreation Sanitary engineering Environmental technology Geography In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage. 2018-07-17T07:59:24Z 2018-07-17T07:59:24Z 2018 http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3684 en Copernicus Publications
institution Trung tâm Học liệu Đại học Quảng Bình (Dspace)
collection Trung tâm Học liệu Đại học Quảng Bình (Dspace)
language English
topic Technology
Anthropology
Recreation
Sanitary engineering
Environmental technology
Geography
spellingShingle Technology
Anthropology
Recreation
Sanitary engineering
Environmental technology
Geography
Boettle, M.
Rybski, D.
Kropp, J. P.
Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
description In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.
author Boettle, M.
Rybski, D.
Kropp, J. P.
author_facet Boettle, M.
Rybski, D.
Kropp, J. P.
author_sort Boettle, M.
title Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
title_short Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
title_full Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
title_fullStr Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
title_full_unstemmed Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
title_sort quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage
publisher Copernicus Publications
publishDate 2018
url http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3684
_version_ 1717292436189872128
score 9,463379