Please use this identifier to cite or link to this item: http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3845
Title: A modern mode of activation for nucleic acid enzymes
Authors: Dominique, Lévesque
Francis, P Brière
Jean-Pierre, Perreault
Keywords: Medicine
Science
Issue Date: 7/2007
Publisher: Public Library of Science (PLoS)
Abstract: Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.
URI: http://lrc.quangbinhuni.edu.vn:8181/dspace/handle/DHQB_123456789/3845
ISSN: 1932-6203 (Online)
Appears in Collections:Astronomy

Files in This Item:
File Description SizeFormat 
pone.0000673.pdf240.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.