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ABSTRACT: This paper focuses on the exponential stability of stochastic differential equa-
tions with delayed impulses and Markovian switching. A novel approach is developed to treat de-
layed impulses. Particularly, for a given stochastic differential equation and p > 0, a constant 6
is introduced to summarize the contribution of delayed impulses on the pth moment exponential
stability. In contrast to the progress in the literature, this paper provides a new criterion for the

moment exponential stability.

Keywords: Stochastic differential equation, moment exponential stability, delayed impulses,

Markovian switching.

TOM TAT: Bai viét nay nghién civu tinh én dinh mii ciia cdc phicong trinh vi phdn ngau
nhién véi xung c6 tré va buéc chuyén Markov. Mot phwong phdp méi dwoc phdt trién dé xir Ii cdc
xung cé tré. Cy thé la, véi méi phirong trinh vi phdn ngdu nhién va p>0, mot hang so theta dirge
diing dé do lwong sir déng gop ciia cdc xung cé tré vao tinh én dinh mil theo moment cdp p ciia
phirong trinh. Bai bdo nay dong gép mét tiéu chi mdi cho tinh 6n dinh mii theo moment ciia 16p
phuwong trinh duoc nghién curu.

Tir khéa: Phuwong trinh vi phdn ngdu nhién, thoi diém 6n dinh mil, xung cé tré, chuyén

mach Markovian.

1. INTRODUCTION

This work focuses on the moment expo-
nential stability of Markovian switching
stochastic differential equations (MSDEs).
Particularly, given by

dX(t) = f(X(2), 1, a(t))dt

+9(X (1), 1, at))dw(?), t >0,
with initial condition (X (0),a(0)) =
(zo,70) € R x M, where f(-) and g(-)
are suitable functions, w(-) is a Brownian

(1)

motion, a(-) is a finite state Markov chain.

Suppose that Eq. (1) is not pth moment ex-
ponential stable (p is a positive constant).
An effective approach is to introduce impul-
sive control to stabilize the given equation.
In contrast to the formulations in [3, 7, 8] to
mention just a few, we assume that at each
time instant ¢ > 0, one can only observe
the state process X (-) with certain time de-
lays. To be more specific, the dynamic sys-
tem with impulses is given by

dX (1) = F(X ()1, a(t))dt

+,/
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+9(X(t), 1, aft))dw(t), t=0,
X(te) = L(X (tx — di), (ty)),
keN, ?)

with initial condition (X(0),(0)) =
(z0,70) € R? x M, where I;,(-) are suit-
able functions, {x }x>0 is a strictly increas-
ing sequence of nonnegative numbers sat-
isfying ¢ = 0 and limy_, .ty = o0,
{dk } ken is a sequence of nonnegative num-
bers satisfying tp_ 1 < 1 — dy for k €
N. Here X(t,) lim,_,, X(t) and
a(ty,) = lim,_,,— a(t). The following ques-
tion arises naturally: What are the contri-
butions of the impulsive functions { I; } e
and the time delays {dj }ren to the pth mo-
ment exponential stability of Eq. (2)? The
question motivates this paper.

Recently, impulsive systems with delayed
impulses have received considerable atten-
tions. To mention just a few of the recent
development, we refer to [1, 2, 4, 5, 6] and
references therein. In this paper, we employ
novel approaches to the exponential stabil-
ity of MSDEs with delayed impulses. For
a given stochastic differential equation, a
constant 6 is introduced to summarize the
contribution of delayed impulses on expo-
nential stability. Then a stability criterion
(Theorem 4) is established by using a com-
parison procedure.

The rest of the work is organized as follows.
Section 2. begins with the problem formu-
lation. Section 3. presents a new criterion
for the moment exponential stability of im-

pulsive MSDEs. Finally, the paper is con-
cluded with several remarks in Section 3.

+ 0
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We begin this section with the following no-
tation.

Notation. Let N = {1,2,...}, R, =
0,00), dymy € N, and M =
{1,2,...,mp}. For two real numbers

c; and ¢y, ¢; V ¢y denotes max{cy,cy}.
For di,d, € N, and a matrix A €
R%xd2 AT denotes its transpose and
|A] = \/tr(ATA) its trace norm. Par-
ticularly, for # = (21,...,24)" € R,
2| = (XL, 22)" is its Euclidean norm.
We work with a complete filtered probabil-
ity space (2, F, P, { F;}) with the filtration
{F.} satisfying the usual condition (i.e.,
it is right-continuous and F, contains all
the null sets). Assume that the Markov
chain «(-) and the m-dimensional stan-
dard Brownian motion w(-) are defined on
(Q, F,P,{F;}), where m € N. Moreover,
a(-) and w(-) are {F;}-adapted and inde-
pendent. Let p > 0 be a constant.

a(-) takes values in M =
{1,...,mp} with the generator Q =
(qij) € Rmoxmo Let f:RYx Ry x M —
R?, g : RYx Ry x M — R&>™ and
I : RYx M — R (k € N) be Borel mea-
surable functions. Let {t;}x>o be a strictly

Suppose that

increasing sequence of nonnegative num-
bers satisfying £y = 0 and limy_, ., t; = 0.
Let {dy } ken be a sequence of positive num-
berssuchthatt,_; < t;,—d, foreachk € N.
Consider the impulsive MSDE

dX(t) = f(X(t),t,a(t))dt

+9(X (1), t,a(t))dw(t), t > 0,t & {t)}s,
X(tr) = (X (te — di), a(ty)),

k €N, 3)



with initial condition (x¢,4y) € R? x M;
that 1s,

X(0)=xzp, a(0)=ipe M. (4)
We define an operator £ associated with
(X(-),a(-)) as follows. Suppose V : R? x
R, x M — R is twice continuously differ-
entiable in € R? and continuously differ-

entiable in t € R, for each i € M. Then

LV (z,t,1) = Vi(x, t,i)
+Vi(x, t,4) f(x,t,47)

1
+5tr(g " (., 0) Vea (2,1, 0)g (2, 1,1))

+ Z Qijv(‘rv Zf,j),
jEM
for (z,t,i) € R? x Ry x M, where
Vi(z, 1) = (0/0t)V (x,-,1), V(- t,1) and
Viz(+, t, 1) denote the gradient and Hessian
matrix of V (-, ¢, 1), respectively. Through-
out this work, we suppose the following as-
sumption (A) holds.

(A) (a) We have f(0,t,1)
0 forall

= ¢(0,t,i) =
(t,1) € Ry x M.

(b) For any real number 7" > 0 and
k € N, there exists a positive num-
ber My, such that for all t € [0, 7],
i € M, and all z,y € R? with
2 VIyl <k |f (@, 8,0) = fy, 1, )+
l9(x,t,9) — g(y.t,9)]> < Mrgle —
yl?.

Also there exists a constant Mgy > 0

such that

z' flz,t,1) Vg(a,t, i)

< Moo(1 + |z|?) forall (z,t,i) €

R? x Ry x M.
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(c) There exist positive constants M},
and M for k € N such that My |x| <
|I(2,7)| < Myla| forall (z,i) e
R x RYx M, keN.

The existence and uniqueness theorem is
given below. The proof is standard. Hence,
we omit it for brevity.

Theorem 1. Assume (A). Then for each
(w0,70) € R x M, Eq. (3) has a unique
global solution (X®0+(-), o (-)) satisfying
(4). Moreover, for each k € N, X0-0(.)
has continuous sample paths on the inter-
val [t;_1,1y) almost surely and

E( sup |Xxo»io(s)|p) <
—r<s<T
forany T > 0.

Remark 2. Assumption (A)(c) guarantees
the nonzero property; that is, zo # 0 im-
plies

IP’(XIO’iO(t) #0 forall t> O) = 1.

We recall the definition of the pth moment
exponential stability of impulsive MSDEs
below.

Definition 3. Eq. (3) is said to be pth mo-
ment exponentially stable if there exist con-
stants A’ > 0 and A > 0 such that

E|X®0 ()P < Ke *|a|?
for (xg,ip) € RT x M, t > 0.

( 08 4AC:BA

We are now in a position to state a criterion
for the moment exponential stability.

Theorem 4. Assume (A). Let V : RY x
M — R be a twice continuously differen-

+ 1
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tiable on R? \ {0} for each i € M satisfy-
ing r|z|P < V(x,i) for (x,i) € RY x M,
where 1 is a positive number. Suppose that
there exist numbers 5 € R, yn > 0, and a
sequence of nonnegative numbers {py.} ren
such that

LV (z,t,i) < BV (x,1),

(z,t,1) € (RT\ {0}) x Ry x M, ©)
V(w,i) < uV(z,5), (x,,5) € RIX MM,
(6)
and
V(Ik(ajvi%i) < ka(Jf,i% %)

(z,i) e RYx M, k€N,
Then the following assertions hold.

(a) There exists a constant K > 0 such
that
E|Xx0’i°(t)|p < K|:E0|pe“’(t), ®
(l’o,io) € Rd X M, t> O,

where

— ﬂt—i-z In (pj,ue_ﬁd

(b) If

Adiy < 0,
)

then Eq. (3) is pth moment exponen-

£+ limsup — Zln pipe”

t—o00 tj<t

tially stable.

Proof. For notational simplicity, denote
X(-) = X®(.)and a(-) = a'(-). With-
out loss of generality, suppose =y # 0. By
Theorem 1, sup,co, ) EV(X(t),a(t)) <
00. Meanwhile, it follows from the defini-
tion of ¢(-) that infyep,) €™ > 0. Con-

+ 2

), t> 0.

sequently, we can find a sufficiently large
number Ky > 0 such that
EV(X(t),a(t) < KiefW, t € [0,t,),
(10)
where K7 = Ky|zo|P.
(a) We prove by induction that for any n &
N,

EV (X (t), a(t)) < K1e#D, t € [0,t,).
(11)
In view of (10), (11) holds for n = 1. Now
suppose (11) holds for n < k; that is,
EV (X (1), a(t) < Kie?Y, t € [0, ;).
(12)
We proceed to show that (11) holds for n =
k + 1. Consider the real-valued functions
®(-) and U(-) defined by

O(t) aft), U(t) = KiefW,
t e [0, tk+1)-

= EV(X (1),

It is clear that ®(¢) < W(¢) for any ¢ €
[0,tx). By (6), (7), and the properties of
Markov chain «(-), we have

EV (X (tk), a(tr))
= BV (L(X (8 — di). altp)) aty))
<E(peV (Xt~ di), o(f7)) )

< E(pprV (X (i — di), oty — di))
_ M)kE( (X (te — dp), alty — di)) ),
which together with (12) implies that

EV (X (tg), a(ty)) < prpkqef )

= pk:uKleﬁ(tk_dk)—’_thStk—dk ln(pjﬂeiﬁdj)

—Bdgy B+, o In(pjue
— Kleln(pkp,e )6 Et]<tk (pj 1

< Klesﬁ(tk);

_ij)

(13)



that is, ®(tx) < ¥(tx). By Theorem 1, ®(+)
and W(-) are continuous on [ty, tx1). We
claim that

(I)(t) < \I/(t), t € (tk,tk+1). (14)

If this statement were false, by the conti-
nuity of the functions ®(-) and ¥(-), there
would exist a number ¢, € (tg,%;+1) such
that

O(t) < W(t) for t € [ty,t.),

o) = vy, )

Fix A > |B|. Consider the function
W (z,t,i) = MV (z,i) for (x,t,i) € RY x
[tr,tkr1) X M. Applying the It6 formula
and taking expectation of both sides of the
resulting equation yield

ARV (X (L), aty))
— e*tkEV(i((tk% a(ty))

LB e (W(x(s).a(9)

+LV (X (s), s, a(s)))ds.
By (5),
E / " (AV(X(5).als)

127

+£V(X(s)7s,a(s)))ds

< /t * (N + BEV(X(s), a(s))ds.
k a7)

(16)

In view of (15), we have

EV (X (s), a(s)) < K1e?®) s € [ty t,).

(18)
Combining the estimates in (17) and (18)
yields

E / "o (AW (X(s).a(s))

ty
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YLV (X (s), s,oz(s)))ds

et (N + B)ds
b ) (19)

_ Ky eXyse o)

Ty
/ MR (N + B)ds

ty
] In(p;pe %
— Kleztjgtk (PJN )

(eO+P)s _ 4B

< Ky

It follows from (13), (16), and (19) that
ARV (X (L), aft,)) < KjeMtelts)
LK ety e ) (OB _ OBtk
_ Klezt‘jgtk ln(pjue_ﬁdj)e(/\w)t*.
Hence
O(t.) = BV (X(t.), a(t.))
< Kleﬁt*+2tjgtk In(p;pe” %) = U(t,),

which contradicts the second statement in
(15). As aresult, (14) holds. Consequently,

EV(X(t),a(t)) < K;ie#", £ >0,
which implies (8).
(b) The conclusion follows from (8) and (9).
O

Remark 5. Under the conditions of Theo-
rem 4,

1 .
lim sup — In (E| X (¢)|)

t—o00 t

: 1 .
< B4 limsup - Z In(p;pe"%).
t—00 t t<t

(20)

The left hand side of (20) is known as the
pth moment Lyapunov exponent of Eq. (3).
The corresponding impulsive-free MSDE
of Eq. (3) is

dX(t) = f(X(t),t,at))dt

=9(X (0, La()du(o), =0, @

+3
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By virtue of Theorem 4, the pth moment
Lyapunov exponent of the impulsive-free
MSDE (21) is not greater than 3. The con-
stant
6 := limsup E Z In(p;pe %)
t—o0 f<t

can be regarded as the contribution of the
impulses to the pth moment Lyapunov ex-
ponent of Eq. (3). It is readily seen that
because of the delays of the impulses, the
value of ¢ also depends on . By Theorem
4, the pth moment Lyapunov exponent of
the impulsive MSDE (3) is not greater than
B+ 6. 1f 6 < 0, the impulses have positive
effects on the pth moment exponential sta-
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