
 

 

 

 

 

 

 

SEQUENCES

A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the
nth term. We will deal exclusively with infinite sequences and so each term will
have a successor .

Notice that for every positive integer there is a corresponding number and so
a sequence can be defined as a function whose domain is the set of positive integers.
But we usually write instead of the function notation for the value of the func-
tion at the number .

NOTATION The sequence { , , , . . .} is also denoted by

EXAMPLE 1 Some sequences can be defined by giving a formula for the nth term.
In the following examples we give three descriptions of the sequence: one by using
the preceding notation, another by using the defining formula, and a third by writing
out the terms of the sequence. Notice that doesn’t have to start at 1.
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8.1

SERIES

Infinite series are sums of infinitely many terms. (One of our aims in this chapter is to define
exactly what is meant by an infinite sum.) Their importance in calculus stems from Newton’s idea
of representing functions as sums of infinite series. For instance, in finding areas he often
integrated a function by first expressing it as a series and then integrating each term of the series.
We will pursue his idea in Section 8.7 in order to integrate such functions as . (Recall that we
have previously been unable to do this.) Many of the functions that arise in mathematical physics
and chemistry, such as Bessel functions, are defined as sums of series, so it is important to be
familiar with the basic concepts of convergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 8.8. In studying fields as
diverse as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a
function with the first few terms in the series that represents it.

e�x2

8

410



 

 

 

 

 

 

 

EXAMPLE 2 Find a formula for the general term of the sequence

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

Notice that the numerators of these fractions start with 3 and increase by 1 whenever
we go to the next term. The second term has numerator 4, the third term has numer-
ator 5; in general, the th term will have numerator . The denominators are the
powers of 5, so has denominator . The signs of the terms are alternately posi-
tive and negative, so we need to multiply by a power of . In Example 1(b) the
factor meant we started with a negative term. Here we want to start with a
positive term and so we use or . Therefore,

■

EXAMPLE 3 Here are some sequences that don’t have a simple defining equation.

(a) The sequence , where is the population of the world as of January 1 in
the year .

(b) If we let be the digit in the nth decimal place of the number , then is a
well-defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 41). ■

A sequence such as the one in Example 1(a), , can be pictured
either by plotting its terms on a number line as in Figure 1 or by plotting its graph as
in Figure 2. Note that, since a sequence is a function whose domain is the set of posi-
tive integers, its graph consists of isolated points with coordinates

. . . . . .

From Figure 1 or 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference
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can be made as small as we like by taking sufficiently large. We indicate this by 
writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that
the following definition of the limit of a sequence is very similar to the definition of a
limit of a function at infinity given in Section 1.6.

DEFINITION A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently
large. If exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have
the limit .

A more precise version of Definition 1 is as follows.

DEFINITION A sequence has the limit and we write

if for every there is a corresponding integer such that

if then

Definition 2 is illustrated by Figure 4, in which the terms , , , . . . are plotted
on a number line. No matter how small an interval is chosen, there exists
an such that all terms of the sequence from onward must lie in that interval.
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■ Compare this definition with 
Definition 1.6.7.



 

 

 

 

 

 

 

Another illustration of Definition 2 is given in Figure 5. The points on the graph of
must lie between the horizontal lines and if . This

picture must be valid no matter how small is chosen, but usually a smaller requires
a larger .

If you compare Definition 2 with Definition 1.6.7, you will see that the only dif-
ference between and is that is required to be an
integer. Thus we have the following theorem, which is illustrated by Figure 6.

THEOREM If and when is an integer, then 
.

In particular, since we know that when , we have

if

If becomes large as n becomes large, we use the notation . The
following precise definition is similar to Definition 1.6.8.

DEFINITION means that for every positive number there
is an integer such that

if then

If , then the sequence is divergent but in a special way. We say
that diverges to .

The Limit Laws given in Section 1.4 also hold for the limits of sequences and their
proofs are similar.
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If and are convergent sequences and is a constant, then

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem,
whose proof is left as Exercise 45.

THEOREM If , then .

EXAMPLE 4 Find .

SOLUTION The method is similar to the one we used in Section 1.6: Divide numera-
tor and denominator by the highest power of that occurs in the denominator and
then use the Limit Laws.

Here we used Equation 4 with . ■
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 cn
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Squeeze Theorem for Sequences

Limit Laws for Sequences

■ This shows that the guess we made 
earlier from Figures 1 and 2 was correct.

FIGURE 7
The sequence 
bn� is squeezed
between the sequences 
an�
and 
cn�.
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SOLUTION Notice that both numerator and denominator approach infinity as .
We can’t apply l’Hospital’s Rule directly because it applies not to sequences but to
functions of a real variable. However, we can apply l’Hospital’s Rule to the related
function and obtain

Therefore, by Theorem 3 we have

■

EXAMPLE 6 Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1
and infinitely often, does not approach any number. Thus, does
not exist; that is, the sequence is divergent. ■

EXAMPLE 7 Evaluate if it exists.

SOLUTION

Therefore, by Theorem 6,

■

EXAMPLE 8 Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as but here
we have no corresponding function for use with l’Hospital’s Rule ( is not defined
when is not an integer). Let’s write out a few terms to get a feeling for what 
happens to as gets large:

It appears from these expressions and the graph in Figure 10 that the terms are
decreasing and perhaps approach 0. To confirm this, observe from Equation 7 that

an �
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■ The graph of the sequence in 
Example 7 is shown in Figure 9 and
supports the answer.
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Notice that the expression in parentheses is at most 1 because the numerator is less
than (or equal to) the denominator. So

We know that as . Therefore, as by the Squeeze 
Theorem. ■

EXAMPLE 9 For what values of is the sequence convergent?

SOLUTION We know from Section 1.6 and the graphs of the exponential functions
in Section 3.1 that for and for .
Therefore, putting and using Theorem 3, we have

For the cases and we have

and

If , then , so

and therefore by Theorem 6. If , then diverges as in
Example 6. Figure 11 shows the graphs for various values of . (The case is
shown in Figure 8.)

■

The results of Example 9 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .
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■ CREATING GRAPHS OF SEQUENCES
Some computer algebra systems have spe-
cial commands that enable us to create
sequences and graph them directly. With
most graphing calculators, however,
sequences can be graphed by using para-
metric equations. For instance, the
sequence in Example 8 can be graphed 
by entering the parametric equations

and graphing in dot mode starting with 
, setting the -step equal to . The 

result is shown in Figure 10.
1tt � 1

x � t y � t!�t t

FIGURE 10
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DEFINITION A sequence is called increasing if for all
, that is, It is called decreasing if for all
. A sequence is monotonic if it is either increasing or decreasing.

EXAMPLE 10 The sequence is decreasing because

and so for all . ■

EXAMPLE 11 Show that the sequence is decreasing.

SOLUTION We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

Since , we know that the inequality is true. Therefore, 
and so is decreasing. ■

DEFINITION A sequence is bounded above if there is a number 
such that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the 
sequence satisfies but is divergent from Example 6] and 
not every monotonic sequence is convergent . But if a sequence is �an � nl ��

�1 
 an 
 1an � ��1�n

n0 � an � 1an � n��n � 1�
�an � 0�an � n


an �

for all n � 1m 
 an

m

for all n � 1an 
 M

M
an �10


an �
an�1 � ann2 � n � 1n � 1

1 � n2 � n&?

n3 � n2 � n � 1 � n3 � 2n2 � 2n&?

�n � 1��n2 � 1� � n��n � 1�2 � 1
&?
n � 1

�n � 1�2 � 1
�

n

n2 � 1

n � 1

�n � 1�2 � 1
�

n

n2 � 1

an�1 � an

an �
n

n2 � 1

n � 1an � an�1

3

n � 5
�

3

�n � 1� � 5
�

3

n � 6

� 3

n � 5�
n � 1

an � an�1a1 � a2 � a3 � 	 	 	 .n � 1
an � an�1
an �9
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■ Another way to do Example 11 is to
show that the function

is decreasing because for
.x � 1

f ��x� � 0

x � 1f �x� �
x

x 2 � 1

■ The right side is smaller because it
has a larger denominator.



 

 

 

 

 

 

 

both bounded and monotonic, then it must be convergent. This fact is proved as 
Theorem 11, but intuitively you can understand why it is true by looking at Fig-
ure 12. If is increasing and for all , then the terms are forced to crowd
together and approach some number .

The proof of Theorem 11 is based on the Completeness Axiom for the set of
real numbers, which says that if is a nonempty set of real numbers that has an upper
bound ( for all in ), then has a least upper bound . (This means that

is an upper bound for , but if is any other upper bound, then .) The 
Completeness Axiom is an expression of the fact that there is no gap or hole in the real
number line.

MONOTONIC SEQUENCE THEOREM Every bounded, monotonic sequence is
convergent.

PROOF Suppose is an increasing sequence. Since is bounded, the set
has an upper bound. By the Completeness Axiom it has a least

upper bound . Given , is not an upper bound for (since is the least
upper bound). Therefore

But the sequence is increasing so for every . Thus if we have

so

since . Thus

so .
A similar proof (using the greatest lower bound) works if is decreasing. ■

The proof of Theorem 11 shows that a sequence that is increasing and bounded
above is convergent. (Likewise, a decreasing sequence that is bounded below is con-
vergent.) This fact is used many times in dealing with infinite series in Sections 8.2
and 8.3.

Another use of Theorem 11 is indicated in Exercises 38–40.


an �
lim nl� an � L

n � Nwhenever� L � an � � �

an 
 L

 0 
 L � an � �

an � L � �

n � Nn � Nan � aN

for some integer NaN � L � �

LSL � �� � 0L
S � 
an � n � 1�


an �
an �
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b 
 MMSb
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S
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L
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FIGURE 12

3. List the first six terms of the sequence defined by

Does the sequence appear to have a limit? If so, find it.

an �
n

2n � 1

1. (a) What is a sequence?
(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

limnl� an � �
limnl� an � 8

EXERCISES8.1



 

 

 

 

 

 

 

Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

32. (a) If is convergent, show that

(b) A sequence is defined by and
for . Assuming that is

convergent, find its limit.

33–36 ■ Determine whether the sequence is increasing,
decreasing, or not monotonic. Is the sequence bounded?

34.

35. 36.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

37. Find the limit of the sequence

38. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic
Sequence Theorem to show that exists.

(b) Find .

Use induction to show that the sequence defined by ,
is increasing and for all . Deduce

that is convergent and find its limit.

40. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

41. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair pro-
duces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show
that the answer is , where is the Fibonacci
sequence defined in Example 3(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

42. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and

estimating the value of to five decimal places.L
a � 1f �x� � cos x

f �L� � Llimnl� an � L
fan�1 � f �an �

a3 � f �a2� � f � f �a��a2 � f �a�a1 � a


an �
an�1 � 1 � 1�an�2an � fn�1�fn


 fn �fn

nth

0 � an 
 2

an�1 �
1

3 � an
a1 � 2


an �
nan � 3an�1 � 3 � 1�an

a1 � 139.

limnl� an

limnl� an


an �
an�1 � s2 � ana1 � s2
an �

{s2 , s2s2 , s2s2s2 , . . .}

an � n �
1

n
an � cos�n��2�

an �
2n � 3

3n � 4
an �

1

2n � 3
33.


an �n � 1an�1 � 1��1 � an �
a1 � 1
an �

lim
nl�

an�1 � lim
nl�

an


an �


an �31.4. List the first nine terms of the sequence . Does
this sequence appear to have a limit? If so, find it. If not,
explain why.

5–8 ■ Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

6.

7. 8.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9–28 ■ Determine whether the sequence converges or diverges.
If it converges, find the limit.

10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

22.

23. 24.

26.

27. 28.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

29. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth 
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.

30. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

a1 � 25a1 � 11

an�1 � �1
2 an

3an � 1

if an is an even number

if an is an odd number


an �

an � 1000�1.06�nn

an �
��3�n

n!
an � ln�2n2 � 1� � ln�n2 � 1�

an �
�ln n�2

n

0, 1, 0, 0, 1, 0, 0, 0, 1, . . . �25.

an �
sin 2n

1 � sn
an � �1 �

2

n�
n


n cos n��an �
cos2n

2n21.


arctan 2n�
n2e �n�

an � cos�2�n�� e n � e �n

e 2n � 1 �
an �

��1�nn3

n3 � 2n2 � 1
an �

��1�n�1n

n2 � 1

an �
n

1 � sn
an �

�n � 2�!
n!

an �
sn

1 � sn
an �

2n

3n�1

an �
n � 1

3n � 1
an �

3 � 5n2

n � n29.


5, 1, 5, 1, 5, 1, . . .�
2, 7, 12, 17, . . .�

{�
1
4 , 2

9 , �
3

16 , 4
25 , . . .}{1, �

2
3 , 4

9 , �
8
27 , . . .}5.
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43. We know that [from (8) with ].
Use logarithms to determine how large has to be so that

.

44. Use Definition 2 directly to prove that 
when .

45. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

46. (a) Show that if and ,
then is convergent and .

(b) If and

find the first eight terms of the sequence . Then use 
part (a) to show that . This gives the 
continued fraction expansion

s2 � 1 �
1

2 �
1

2 � 	 	 	

lim nl� an � s2

an �

an�1 � 1 �
1

1 � an

a1 � 1
lim nl� an � L
an �

lim nl� a2n�1 � Llim nl� a2n � L

� r � � 1
lim nl� r n � 0

�0.8�n � 0.000001
n

r � 0.8limnl� �0.8�n � 0 47. The size of an undisturbed fish population has been
modeled by the formula

where is the fish population after years and and are
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is .
(a) Show that if is convergent, then the only possible 

values for its limit are 0 and .
(b) Show that .
(c) Use part (b) to show that if , then ;

in other words, the population dies out.
(d) Now assume that . Show that if , then

is increasing and . Show also that
if , then is decreasing and .
Deduce that if , then .limnl� pn � b � aa � b

pn � b � a
 pn�p 0 � b � a
0 � pn � b � a
 pn�

p 0 � b � aa � b

limnl� pn � 0a � b
pn�1 � �b�a�pn

b � a

 pn�

p0 � 0

banpn

pn�1 �
bpn

a � pn
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SERIES

If we try to add the terms of an infinite sequence we get an expression of the
form

which is called an infinite series (or just a series) and is denoted, for short, by the
symbol

But does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 
21, . . . and, after the term, we get , which becomes very large as 
increases.

However, if we start to add the terms of the series

we get , , , , , , . . . , , . . . . The table shows that as we add more and
more terms, these partial sums become closer and closer to 1. In fact, by adding suf-
ficiently many terms of the series we can make the partial sums as close as we like 
to 1. So it seems reasonable to say that the sum of this infinite series is 1 and to write

�
�

n�1

1

2n �
1

2
�

1

4
�

1

8
�

1

16
� 	 	 	 �

1

2n � 	 	 	 � 1

1 � 1�2n63
64

31
32

15
16

7
8

3
4

1
2

1

2
�

1

4
�

1

8
�

1

16
�

1

32
�

1

64
� 	 	 	 �

1

2n � 	 	 	

nn�n � 1��2nth

1 � 2 � 3 � 4 � 5 � 	 	 	 � n � 	 	 	

� anor�
�

n�1
an

a1 � a2 � a3 � 	 	 	 � an � 	 	 	1


an �n�1
�

8.2

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997



 

 

 

 

 

 

 

We use a similar idea to determine whether or not a general series (1) has a sum.
We consider the partial sums

and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it

the sum of the infinite series .

DEFINITION Given a series , let denote
its th partial sum:

If the sequence is convergent and exists as a real number,
then the series is called convergent and we write

The number is called the sum of the series. If the sequence is divergent,
then the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we
write we mean that by adding sufficiently many terms of the series we can
get as close as we like to the number . Notice that

EXAMPLE 1 An important example of an infinite series is the geometric series

Each term is obtained from the preceding one by multiplying it by the common
ratio . (We have already considered the special case where and on
page 420.)

If , then . Since doesn’t
exist, the geometric series diverges in this case.

If , we have

and rsn � ar � ar 2 � 	 	 	 � arn�1 � arn

sn � a � ar � ar 2 � 	 	 	 � arn�1

r � 1

lim nl� snsn � a � a � 	 	 	 � a � nal ��r � 1

r � 1
2a � 1

2r

a � 0a � ar � ar 2 � ar 3 � 	 	 	 � arn�1 � 	 	 	 � �
�

n�1
arn�1

�
�

n�1
an � lim

nl�
�
n

i�1
ai

s
��

n�1 an � s


sn �s

�
�

n�1
an � sora1 � a2 � 	 	 	 � an � 	 	 	 � s

� an

lim nl� sn � s
sn �

sn � �
n

i�1
ai � a1 � a2 � 	 	 	 � an

n
sn��

n�1 an � a1 � a2 � a3 � 	 	 	2

� an

lim nl� sn � s

sn �

sn � a1 � a2 � a3 � 	 	 	 � an � �
n

i�1
ai

s4 � a1 � a2 � a3 � a4

s3 � a1 � a2 � a3

s2 � a1 � a2

s1 � a1
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■ Compare with the improper integral

To find this integral we integrate from 1
to and then let . For a series, we
sum from 1 to and then let .n l �n

t l �t

y�
1

 f �x� dx � lim
tl�
yt

1
f �x� dx



 

 

 

 

 

 

 

Subtracting these equations, we get

If , we know from (8.1.8) that as , so

Thus when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (8.1.8) and so, by Equation 3,

does not exist. Therefore, the geometric series diverges in those cases. ■

We summarize the results of Example 1 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

EXAMPLE 2 Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since
, the series is convergent by (4) and its sum is

■

FIGURE 2

0 n

sn

20

3

5 �
10

3
�

20

9
�

40

27
� 	 	 	 �

5

1 � (� 2
3 ) �

5
5
3

� 3

� r � � 2
3 � 1

r � �
2
3a � 5

5 �
10
3 �

20
9 �

40
27 � 	 	 	

V

� r � � 1

� r � � 1�
�

n�1
arn�1 �

a

1 � r

� r � � 1

�
�

n�1
arn�1 � a � ar � ar 2 � 	 	 	

4

lim nl� sn


rn �r � 1r 
 �1
a��1 � r�� r � � 1

lim
nl�

sn � lim
nl�

a�1 � rn �
1 � r

�
a

1 � r
�

a

1 � r
lim
nl�

rn �
a

1 � r

nl �rn l 0�1 � r � 1

sn �
a�1 � rn �

1 � r
3

sn � rsn � a � arn
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■ Figure 1 provides a geometric demon-
stration of the result in Example 1. If
the triangles are constructed as shown
and is the sum of the series, then, by
similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s

■ In words: The sum of a convergent
geometric series is

first term

1 � common ratio

n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn

■ What do we really mean when we
say that the sum of the series in Exam-
ple 2 is ? Of course, we can’t literally
add an infinite number of terms, one by
one. But, according to Definition 2, the
total sum is the limit of the sequence 
of partial sums. So, by taking the sum
of sufficiently many terms, we can get
as close as we like to the number . 
The table shows the first ten partial
sums and the graph in Figure 2 shows
how the sequence of partial sums
approaches .3

sn

3

3



 

 

 

 

 

 

 

EXAMPLE 3 Is the series convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form :

We recognize this series as a geometric series with and . Since ,
the series diverges by (4). ■

EXAMPLE 4 Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

■

EXAMPLE 5 Find the sum of the series , where .

SOLUTION Notice that this series starts with and so the first term is .
(With series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges
and (4) gives

■

EXAMPLE 6 Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a con-
vergent series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

1

i�i � 1�
�

1

i
�

1

i � 1

sn � �
n

i�1

1

i�i � 1�
�

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� 	 	 	 �

1

n�n � 1�

�
�

n�1

1

n�n � 1�

�
�

n�0
xn �

1

1 � x
5

� r � � � x � � 1r � xa � 1

�
�

n�0
xn � 1 � x � x 2 � x 3 � x 4 � 	 	 	

x � 0x 0 � 1
x 0 � 1n � 0

� x � � 1�
�

n�0
xn

�
23

10
�

17

990
�

1147

495

 2.317 � 2.3 �

17

103

1 �
1

102

� 2.3 �

17

1000

99

100

r � 1�102a � 17�103

2.3171717. . . � 2.3 �
17

103 �
17

105 �
17

107 � 	 	 	

2.317 � 2.3171717V

r � 1r � 4
3a � 4

�
�

n�1
 22n31�n � �

�

n�1
�22�n 3��n�1� � �

�

n�1

4n

3n�1 � �
�

n�1
 4( 4

3 )n�1

arn�1

�
�

n�1
 22n31�n
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■ Another way to identify and is to
write out the first few terms:

4 �
16
3 �

64
9 � 	 	 	

ra

Module 8.2 explores a series
that depends on an angle in 
a triangle and enables you to
see how rapidly the series 
converges when varies.�

�



 

 

 

 

 

 

 

(see Section 6.3). Thus we have

and so

Therefore, the given series is convergent and

■

EXAMPLE 7 Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , 
, , and show that they become large.

Similarly, , , and in general

This shows that as and so is divergent. Therefore, the harmonic
series diverges. ■

THEOREM If the series is convergent, then .lim
nl�

an � 0�
�

n�1
an6


sn �nl �s2n l �

s2n � 1 �
n

2
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2s32 � 1 �
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2

� 1 �
1
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1
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4
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2 � ( 1
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4 ) � ( 1
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1
16 )
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2 � ( 1
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1
4 ) � ( 1
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1
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1
16 )
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1
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1
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1
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3
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� 1 �
1
2 � ( 1

4 �
1
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1
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1
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1
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1
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1
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1
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1
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1
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1
2 � ( 1
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1
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1
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1
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2
2
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1
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s32, . . .s16s8,s4
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1

n
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1
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1

3
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1

4
� 	 	 	

V

�
�

n�1

1

n�n � 1�
� 1
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nl�

sn � lim
nl�

�1 �
1

n � 1� � 1 � 0 � 1

� 1 �
1

n � 1
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1
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2
�

1

3� � �1

3
�

1
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�

1
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n
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i�i � 1�
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�1

i
�

1
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■ Notice that the terms cancel in pairs. 
This is an example of a telescoping
sum: Because of all the cancellations,
the sum collapses (like a pirate’s col-
lapsing telescope) into just two terms.

■ Figure 3 illustrates Example 6 by
showing the graphs of the sequence 
of terms and the
sequence of partial sums. Notice
that and . See Exer-
cises 36 and 37 for two geometric inter-
pretations of Example 6.

sn l 1an l 0

sn �

an � 1�[n�n � 1�]

FIGURE 3

0

1


an�

n


sn�

■ The method used in Example 7 for 
showing that the harmonic series diverges is 
due to the French scholar Nicole Oresme
(1323–1382).



 

 

 

 

 

 

 

PROOF Let . Then . Since is conver-
gent, the sequence is convergent. Let . Since as

, we also have . Therefore

■

NOTE 1 With any series we associate two sequences: the sequence of its
partial sums and the sequence of its terms. If is convergent, then the limit of
the sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the
sequence is 0.

| NOTE 2 The converse of Theorem 6 is not true in general. If , we
cannot conclude that is convergent. Observe that for the harmonic series 
we have as , but we showed in Example 7 that is divergent.

THE TEST FOR DIVERGENCE If does not exist or if ,

then the series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not diver-
gent, then it is convergent, and so .

EXAMPLE 8 Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence. ■

NOTE 3 If we find that , we know that is divergent. If we find
that , we know nothing about the convergence or divergence of .
Remember the warning in Note 2: If , the series might converge or
it might diverge.

THEOREM If and are convergent series, then so are the series
(where is a constant), , and , and

(i) (ii)

(iii)

These properties of convergent series follow from the corresponding Limit Laws
for Sequences in Section 8.1. For instance, here is how part (ii) of Theorem 8 is
proved:

�
�

n�1
�an � bn � � �

�

n�1
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n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn�

�

n�1
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nl�
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lim nl� an � 0

�
�

n�1
an

lim
nl�

an � 0lim
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� s � s � 0lim
nl�
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nl�
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nl�
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sn �
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Let

The nth partial sum for the series is

and, using Equation 5.2.10, we have

Therefore, is convergent and its sum is

■

EXAMPLE 9 Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 6 we found that

So, by Theorem 8, the given series is convergent and

■

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of
a series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known 
that the series converges, then the full series

is also convergent.
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27–29 ■ Find the values of for which the series converges.
Find the sum of the series for those values of .

28.

29.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

30. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

If the partial sum of a series is

find and .

32. If the partial sum of a series is ,
find and .

33. When money is spent on goods and services, those that
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local gov-
ernment begins the process by spending dollars. Suppose
that each recipient of spent money spends and saves

of the money that he or she receives. The values 
and s are called the marginal propensity to consume and the
marginal propensity to save and, of course, .
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number

is called the multiplier. What is the multiplier if the
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend-
ing a large percentage of the money that they receive in
deposits.

34. A certain ball has the property that each time it falls from a
height onto a hard, level surface, it rebounds to a height

, where . Suppose that the ball is dropped from
an initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels.
(b) Calculate the total time that the ball travels. (Use the

fact that the ball falls in .)
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where �kvv

t seconds1
2 tt 2 meters

H
0 � r � 1rh

h

80%
k

k � 1�slimnl� Sn � kD
Snn

Sn

c � s � 1

c100s%
100c%

D

��
n�1 anan

sn � 3 � n2�n��
n�1 annth

��
n�1 anan

sn �
n � 1

n � 1

��
n�1 annth31.

�
�

n�1
 ln�1 �

1

n�

�
�

n�0

cos n x

2n

�
�

n�0

 2n�x � 1�n�
�

n�1

x n

3n27.

x
x1. (a) What is the difference between a sequence and a series?

(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

3–8 ■ Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

3.

4.

5. 6.

8.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9–18 ■ Determine whether the series is convergent or diver-
gent. If it is convergent, find its sum.

9. 10.

11. 12.

13. 14.

15. 16.

18.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

19–22 ■ Determine whether the series is convergent or diver-
gent by expressing as a telescoping sum (as in Example 6). 
If it is convergent, find its sum.

20.

21. 22.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

23–26 ■ Express the number as a ratio of integers.

24.

25.

26.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

6.254 � 6.2545454 . . .

3.417 � 3.417417417 . . .

0.73 � 0.73737373 . . .

0.2 � 0.2222 . . .23.

�
�

n�1
 ln 

n

n � 1�
�

n�1

3

n�n � 3�

�
�

n�1

2

n 2 � 4n � 3�
�

n�2

2

n 2 � 1
19.

sn

�
�

k�1
�cos 1�k�

�

n�1
 arctan n17.

�
�

n�1
��0.8�n�1 � �0.3�n
�

�

n�1
sn 2

�
�

n�1

1 � 3 n

2 n�
�

n�1

1 � 2 n

3 n

�
�

k�1

k�k � 2�
�k � 3�2�

�

k�2

k 2

k 2 � 1

�
�

n�1

n � 1

2n � 3�
�

n�1

1

2n

�
�

n�0

1

(s2 )n�
�

n�0

� n

3 n�17.
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What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of
God because “something has been created out of nothing.”)

40. Suppose that is known to be a convergent
series. Prove that is a divergent series.

41. Prove part (i) of Theorem 8.

42. If is divergent and , show that is divergent.

43. If is convergent and is divergent, show that 
the series is divergent. [Hint: Argue by 
contradiction.]

44. If and are both divergent, is neces-
sarily divergent?

Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain
why must be convergent.

46. The Fibonacci sequence was defined in Section 8.1 by the
equations

Show that each of the following statements is true.

(a)

(b)

(c)

The Cantor set, named after the German mathematician
Georg Cantor (1845–1918), is constructed as follows. We
start with the closed interval and remove the open
interval . That leaves the two intervals and 
and we remove the open middle third of each. Four intervals
remain and again we remove the open middle third of each
of them. We continue this procedure indefinitely, at each
step removing the open middle third of every interval that
remains from the preceding step. The Cantor set consists of 

[ 2
3, 1][0, 1

3 ]( 1
3, 2

3 )
[0, 1]

47.
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fn fn�1

n � 3fn � fn�1 � fn�2f2 � 1,f1 � 1,

� an

nsn 
 1000sn

� an45.

� �an � bn�� bn� an

� �an � bn�
� bn� an

� canc � 0� an

��
n�1 1�an

��
n�1 an �an � 0�

� 1 � 0 � 0 � 0 � 	 	 	 � 1

� 1 � ��1 � 1� � ��1 � 1� � ��1 � 1� � 	 	 	

� 1 � 1 � 1 � 1 � 1 � 1 � 	 	 	

� �1 � 1� � �1 � 1� � �1 � 1� � 	 	 	

 0 � 0 � 0 � 0 � 	 	 	

39.. How long will it take for the ball to come 
to rest?

What is the value of if ?

; 36. Graph the curves , , for 
on a common screen. By finding the areas between

successive curves, give a geometric demonstration of the
fact, shown in Example 6, that

37. The figure shows two circles and of radius 1 that touch
at . is a common tangent line; is the circle that
touches , , and ; is the circle that touches , , 
and ; is the circle that touches , , and . This 
procedure can be continued indefinitely and produces an
infinite sequence of circles . Find an expression for 
the diameter of and thus provide another geometric
demonstration of Example 6.

38. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicu-

lar to , , and this process is continued indefi-
nitely as shown in the figure. Find the total length of all the 
perpendiculars

in terms of and .
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CEGB

F
H

D ¨

b

�b

� CD � � � DE � � � EF � � � FG � � 	 	 	

EF � ABBC
DEABCD

� AC � � b�A � �ABC

1 1

P

C£
C™

C¡ D

T

C

Cn


Cn �

C2DCC3C1

DCC2TDC
C1TP

DC

�
�

n�1

1

n�n � 1�
� 1

4, . . .
n � 0, 1, 2, 3,0 
 x 
 1y � x n

�
�

n�2
�1 � c��n � 2c35.

0 � k � 1
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49. Consider the series

(a) Find the partial sums and . Do you recognize
the denominators? Use the pattern to guess a formula
for .

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and

find its sum.

50. In the figure there are infinitely many circles approaching
the vertices of an equilateral triangle, each circle touching
other circles and sides of the triangle. If the triangle has
sides of length 1, find the total area occupied by the circles.

sn

s4s1, s2, s3,

�
�

n�1

n

�n � 1�!

the numbers that remain in after all those intervals
have been removed.
(a) Show that the total length of all the intervals that are

removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers
in the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart
of the Cantor set. It is constructed by removing the cen-
ter one-ninth of a square of side 1, then removing the
centers of the eight smaller remaining squares, and 
so on. (The figure shows the first three steps of the 
construction.) Show that the sum of the areas of the 
removed squares is 1. This implies that the Sierpinski
carpet has area 0.

48. (a) A sequence is defined recursively by the equation
for , where and can be

any real numbers. Experiment with various values of 
and and use your calculator to guess the limit of the
sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.a2 � a1an�1 � an

a2a1limnl� an

a2

a1

a2a1n � 3an � 1
2 �an�1 � an�2 �


an �

[0, 1]

SECTION 8.3 THE INTEGRAL AND COMPARISON TESTS ■ 429

THE INTEGRAL AND COMPARISON TESTS

In general, it is difficult to find the exact sum of a series. We were able to accomplish
this for geometric series and the series because in each of those cases
we could find a simple formula for the partial sum . But usually it isn’t easy 
to compute . Therefore, in this section and the next we develop tests that
enable us to determine whether a series is convergent or divergent without explicitly
finding its sum.

In this section we deal only with series with positive terms, so the partial sums are
increasing. In view of the Monotonic Sequence Theorem, to decide whether a series
is convergent or divergent, we need to determine whether the partial sums are bounded
or not.

TESTING WITH AN INTEGRAL

Let’s investigate the series whose terms are the reciprocals of the squares of the posi-
tive integers:

There’s no simple formula for the sum of the first terms, but the computer-
generated table of values given in the margin suggests that the partial sums are ap-
proaching a number near 1.64 as and so it looks as if the series is convergent.nl �

nsn

�
�

n�1

1

n 2 �
1

12 �
1

22 �
1

32 �
1

42 �
1

52 � 	 	 	

limnl� sn

snnth
� 1��n�n � 1�


8.3

n

5 1.4636
10 1.5498
50 1.6251

100 1.6350
500 1.6429

1000 1.6439
5000 1.6447
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1

i 2


