Infinite series are sums of infinitely many terms. (One of our aims in this chapter is to define exactly what is meant by an infinite sum.) Their importance in calculus stems from Newton's idea of representing functions as sums of infinite series. For instance, in finding areas he often integrated a function by first expressing it as a series and then integrating each term of the series. We will pursue his idea in Section 8.7 in order to integrate such functions as $e^{-x^{2}}$. (Recall that we have previously been unable to do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel functions, are defined as sums of series, so it is important to be familiar with the basic concepts of convergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 8.8. In studying fields as diverse as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with the first few terms in the series that represents it.

8.1 SEQUENCES

A sequence can be thought of as a list of numbers written in a definite order:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

The number a_{1} is called the first term, a_{2} is the second term, and in general a_{n} is the nth term. We will deal exclusively with infinite sequences and so each term a_{n} will have a successor a_{n+1}.

Notice that for every positive integer n there is a corresponding number a_{n} and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_{n} instead of the function notation $f(n)$ for the value of the function at the number n.

NOTATION The sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is also denoted by

$$
\left\{a_{n}\right\} \quad \text { or } \quad\left\{a_{n}\right\}_{n=1}^{\infty}
$$

EXAMPLE II Some sequences can be defined by giving a formula for the nth term. In the following examples we give three descriptions of the sequence: one by using the preceding notation, another by using the defining formula, and a third by writing out the terms of the sequence. Notice that n doesn't have to start at 1 .
(a) $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} \quad a_{n}=\frac{n}{n+1} \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \frac{n}{n+1}, \ldots\right\}$
(b) $\left\{\frac{(-1)^{n}(n+1)}{3^{n}}\right\} \quad a_{n}=\frac{(-1)^{n}(n+1)}{3^{n}} \quad\left\{-\frac{2}{3}, \frac{3}{9},-\frac{4}{27}, \frac{5}{81}, \ldots, \frac{(-1)^{n}(n+1)}{3^{n}}, \ldots\right\}$
(c) $\{\sqrt{n-3}\}_{n=3}^{\infty} \quad a_{n}=\sqrt{n-3}, n \geqslant 3 \quad\{0,1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n-3}, \ldots\}$
(d) $\left\{\cos \frac{n \pi}{6}\right\}_{n=0}^{\infty} \quad a_{n}=\cos \frac{n \pi}{6}, n \geqslant 0 \quad\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \ldots, \cos \frac{n \pi}{6}, \ldots\right\}$
\square EXAMPLE 2 Find a formula for the general term a_{n} of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \frac{7}{3125}, \ldots\right\}
$$

assuming that the pattern of the first few terms continues.
SOLUTION We are given that

$$
a_{1}=\frac{3}{5} \quad a_{2}=-\frac{4}{25} \quad a_{3}=\frac{5}{125} \quad a_{4}=-\frac{6}{625} \quad a_{5}=\frac{7}{3125}
$$

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we go to the next term. The second term has numerator 4 , the third term has numerator 5 ; in general, the nth term will have numerator $n+2$. The denominators are the powers of 5 , so a_{n} has denominator 5^{n}. The signs of the terms are alternately positive and negative, so we need to multiply by a power of -1 . In Example 1(b) the factor $(-1)^{n}$ meant we started with a negative term. Here we want to start with a positive term and so we use $(-1)^{n-1}$ or $(-1)^{n+1}$. Therefore,

$$
a_{n}=(-1)^{n-1} \frac{n+2}{5^{n}}
$$

EXAMPLE 3 Here are some sequences that don't have a simple defining equation.
(a) The sequence $\left\{p_{n}\right\}$, where p_{n} is the population of the world as of January 1 in the year n.
(b) If we let a_{n} be the digit in the nth decimal place of the number e, then $\left\{a_{n}\right\}$ is a well-defined sequence whose first few terms are

$$
\{7,1,8,2,8,1,8,2,8,4,5, \ldots\}
$$

(c) The Fibonacci sequence $\left\{f_{n}\right\}$ is defined recursively by the conditions

$$
f_{1}=1 \quad f_{2}=1 \quad f_{n}=f_{n-1}+f_{n-2} \quad n \geqslant 3
$$

Each term is the sum of the two preceding terms. The first few terms are

$$
\{1,1,2,3,5,8,13,21, \ldots\}
$$

This sequence arose when the 13th-century Italian mathematician known as Fibonacci solved a problem concerning the breeding of rabbits (see Exercise 41).

A sequence such as the one in Example $1(\mathrm{a}), a_{n}=n /(n+1)$, can be pictured either by plotting its terms on a number line as in Figure 1 or by plotting its graph as in Figure 2. Note that, since a sequence is a function whose domain is the set of positive integers, its graph consists of isolated points with coordinates

$$
\left(1, a_{1}\right) \quad\left(2, a_{2}\right) \quad\left(3, a_{3}\right) \quad \ldots \quad\left(n, a_{n}\right) \quad \ldots
$$

From Figure 1 or 2 it appears that the terms of the sequence $a_{n}=n /(n+1)$ are approaching 1 as n becomes large. In fact, the difference

$$
1-\frac{n}{n+1}=\frac{1}{n+1}
$$

FIGURE 3
Graphs of two sequences with $\lim _{n \rightarrow \infty} a_{n}=L$

A more precise version of Definition 1 is as follows.
2. DEFINITION A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if for every $\varepsilon>0$ there is a corresponding integer N such that

$$
\text { if } \quad n>N \quad \text { then } \quad\left|a_{n}-L\right|<\varepsilon
$$

Definition 2 is illustrated by Figure 4 , in which the terms $a_{1}, a_{2}, a_{3}, \ldots$ are plotted on a number line. No matter how small an interval $(L-\varepsilon, L+\varepsilon)$ is chosen, there exists an N such that all terms of the sequence from a_{N+1} onward must lie in that interval.

Another illustration of Definition 2 is given in Figure 5. The points on the graph of $\left\{a_{n}\right\}$ must lie between the horizontal lines $y=L+\varepsilon$ and $y=L-\varepsilon$ if $n>N$. This picture must be valid no matter how small ε is chosen, but usually a smaller ε requires a larger N.

FIGURE 5

If you compare Definition 2 with Definition 1.6.7, you will see that the only difference between $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{x \rightarrow \infty} f(x)=L$ is that n is required to be an integer. Thus we have the following theorem, which is illustrated by Figure 6.

THEOREM If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

FIGURE 6

In particular, since we know that $\lim _{x \rightarrow \infty}\left(1 / x^{r}\right)=0$ when $r>0$, we have

4

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{r}}=0 \quad \text { if } r>0
$$

If a_{n} becomes large as n becomes large, we use the notation $\lim _{n \rightarrow \infty} a_{n}=\infty$. The following precise definition is similar to Definition 1.6.8.

5 DEFINITION $\lim _{n \rightarrow \infty} a_{n}=\infty$ means that for every positive number M there is an integer N such that

$$
\text { if } \quad n>N \quad \text { then } \quad a_{n}>M
$$

If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then the sequence $\left\{a_{n}\right\}$ is divergent but in a special way. We say that $\left\{a_{n}\right\}$ diverges to ∞.

The Limit Laws given in Section 1.4 also hold for the limits of sequences and their proofs are similar.

FIGURE 7

The sequence $\left\{b_{n}\right\}$ is squeezed between the sequences $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$.

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}=c \lim _{n \rightarrow \infty} a_{n}\right. \\
& \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0 \\
& \lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \text { if } p>0 \text { and } a_{n}>0
\end{aligned}
$$

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If $a_{n} \leqslant b_{n} \leqslant c_{n}$ for $n \geqslant n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Another useful fact about limits of sequences is given by the following theorem, whose proof is left as Exercise 45.

6 THEOREM If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

EXAMPLE 4 Find $\lim _{n \rightarrow \infty} \frac{n}{n+1}$.
SOLUTION The method is similar to the one we used in Section 1.6: Divide numerator and denominator by the highest power of n that occurs in the denominator and then use the Limit Laws.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{n+1} & =\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=\frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n}} \\
& =\frac{1}{1+0}=1
\end{aligned}
$$

Here we used Equation 4 with $r=1$.
EXAMPLE 5 Calculate $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$.

FIGURE 8

- The graph of the sequence in Example 7 is shown in Figure 9 and supports the answer.

FIGURE 9

SOLUTION Notice that both numerator and denominator approach infinity as $n \rightarrow \infty$. We can't apply l'Hospital's Rule directly because it applies not to sequences but to functions of a real variable. However, we can apply l'Hospital's Rule to the related function $f(x)=(\ln x) / x$ and obtain

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0
$$

Therefore, by Theorem 3 we have

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0
$$

EXAMPLE 6 Determine whether the sequence $a_{n}=(-1)^{n}$ is convergent or divergent.
SOLUTION If we write out the terms of the sequence, we obtain

$$
\{-1,1,-1,1,-1,1,-1, \ldots\}
$$

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and -1 infinitely often, a_{n} does not approach any number. Thus, $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist; that is, the sequence $\left\{(-1)^{n}\right\}$ is divergent.

EXAMPLE 7 Evaluate $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}$ if it exists.

SOLUTION

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Therefore, by Theorem 6,

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0
$$

V EXAMPLE 8 Discuss the convergence of the sequence $a_{n}=n!/ n^{n}$, where $n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

SOLUTION Both numerator and denominator approach infinity as $n \rightarrow \infty$ but here we have no corresponding function for use with l'Hospital's Rule (x ! is not defined when x is not an integer). Let's write out a few terms to get a feeling for what happens to a_{n} as n gets large:

$$
\begin{gathered}
a_{1}=1 \quad a_{2}=\frac{1 \cdot 2}{2 \cdot 2} \quad a_{3}=\frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3} \\
a_{n}=\frac{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n}{n \cdot n \cdot n \cdot \cdots \cdot n}
\end{gathered}
$$

It appears from these expressions and the graph in Figure 10 that the terms are decreasing and perhaps approach 0 . To confirm this, observe from Equation 7 that

$$
a_{n}=\frac{1}{n}\left(\frac{2 \cdot 3 \cdot \cdots \cdot n}{n \cdot n \cdot \cdots \cdot n}\right)
$$

- CREATING GRAPHS OF SEQUENCES

Some computer algebra systems have special commands that enable us to create sequences and graph them directly. With most graphing calculators, however, sequences can be graphed by using parametric equations. For instance, the sequence in Example 8 can be graphed by entering the parametric equations

$$
x=t \quad y=t!/ t^{t}
$$

and graphing in dot mode starting with $t=1$, setting the t-step equal to 1 . The result is shown in Figure 10.

FIGURE 10

Notice that the expression in parentheses is at most 1 because the numerator is less than (or equal to) the denominator. So

$$
0<a_{n} \leqslant \frac{1}{n}
$$

We know that $1 / n \rightarrow 0$ as $n \rightarrow \infty$. Therefore, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ by the Squeeze Theorem.

V EXAMPLE 9 For what values of r is the sequence $\left\{r^{n}\right\}$ convergent?
SOLUTION We know from Section 1.6 and the graphs of the exponential functions in Section 3.1 that $\lim _{x \rightarrow \infty} a^{x}=\infty$ for $a>1$ and $\lim _{x \rightarrow \infty} a^{x}=0$ for $0<a<1$. Therefore, putting $a=r$ and using Theorem 3, we have

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}\infty & \text { if } r>1 \\ 0 & \text { if } 0<r<1\end{cases}
$$

For the cases $r=1$ and $r=0$ we have

$$
\lim _{n \rightarrow \infty} 1^{n}=\lim _{n \rightarrow \infty} 1=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} 0^{n}=\lim _{n \rightarrow \infty} 0=0
$$

If $-1<r<0$, then $0<|r|<1$, so

$$
\lim _{n \rightarrow \infty}\left|r^{n}\right|=\lim _{n \rightarrow \infty}|r|^{n}=0
$$

and therefore $\lim _{n \rightarrow \infty} r^{n}=0$ by Theorem 6. If $r \leqslant-1$, then $\left\{r^{n}\right\}$ diverges as in Example 6. Figure 11 shows the graphs for various values of r. (The case $r=-1$ is shown in Figure 8.)

FIGURE II
The sequence $a_{n}=r^{n}$

The results of Example 9 are summarized for future use as follows.

8 The sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leqslant 1$ and divergent for all other values of r.

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{cases}
$$

DEFINITION A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geqslant 1$, that is, $a_{1}<a_{2}<a_{3}<\cdots$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geqslant 1$. A sequence is monotonic if it is either increasing or decreasing.

EXAMPLE 10 The sequence $\left\{\frac{3}{n+5}\right\}$ is decreasing because

$$
\frac{3}{n+5}>\frac{3}{(n+1)+5}=\frac{3}{n+6}
$$

and so $a_{n}>a_{n+1}$ for all $n \geqslant 1$.

EXAMPLE II Show that the sequence $a_{n}=\frac{n}{n^{2}+1}$ is decreasing.
SOLUTION We must show that $a_{n+1}<a_{n}$, that is,

$$
\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1}
$$

This inequality is equivalent to the one we get by cross-multiplication:

$$
\begin{aligned}
\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} & \Longleftrightarrow(n+1)\left(n^{2}+1\right)<n\left[(n+1)^{2}+1\right] \\
& \Longleftrightarrow n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n \\
& \Longleftrightarrow 1<n^{2}+n
\end{aligned}
$$

Since $n \geqslant 1$, we know that the inequality $n^{2}+n>1$ is true. Therefore, $a_{n+1}<a_{n}$ and so $\left\{a_{n}\right\}$ is decreasing.

10 DEFINITION A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

It is bounded below if there is a number m such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.

For instance, the sequence $a_{n}=n$ is bounded below ($a_{n}>0$) but not above. The sequence $a_{n}=n /(n+1)$ is bounded because $0<a_{n}<1$ for all n.

We know that not every bounded sequence is convergent [for instance, the sequence $a_{n}=(-1)^{n}$ satisfies $-1 \leqslant a_{n} \leqslant 1$ but is divergent from Example 6] and not every monotonic sequence is convergent $\left(a_{n}=n \rightarrow \infty\right)$. But if a sequence is

FIGURE 12
both bounded and monotonic, then it must be convergent. This fact is proved as Theorem 11, but intuitively you can understand why it is true by looking at Figure 12 . If $\left\{a_{n}\right\}$ is increasing and $a_{n} \leqslant M$ for all n, then the terms are forced to crowd together and approach some number L.

The proof of Theorem 11 is based on the Completeness Axiom for the set \mathbb{R} of real numbers, which says that if S is a nonempty set of real numbers that has an upper bound $M(x \leqslant M$ for all x in $S)$, then S has a least upper bound b. (This means that b is an upper bound for S, but if M is any other upper bound, then $b \leqslant M$.) The Completeness Axiom is an expression of the fact that there is no gap or hole in the real number line.

II MONOTONIC SEQUENCE THEOREM Every bounded, monotonic sequence is convergent.

PROOF Suppose $\left\{a_{n}\right\}$ is an increasing sequence. Since $\left\{a_{n}\right\}$ is bounded, the set $S=\left\{a_{n} \mid n \geqslant 1\right\}$ has an upper bound. By the Completeness Axiom it has a least upper bound L. Given $\varepsilon>0, L-\varepsilon$ is not an upper bound for S (since L is the least upper bound). Therefore

$$
a_{N}>L-\varepsilon \quad \text { for some integer } N
$$

But the sequence is increasing so $a_{n} \geqslant a_{N}$ for every $n>N$. Thus if $n>N$ we have
so

$$
\begin{aligned}
& a_{n}>L-\varepsilon \\
& \quad 0 \leqslant L-a_{n}<\varepsilon
\end{aligned}
$$

since $a_{n} \leqslant L$. Thus

$$
\left|L-a_{n}\right|<\varepsilon \quad \text { whenever } n>N
$$

so $\lim _{n \rightarrow \infty} a_{n}=L$.
A similar proof (using the greatest lower bound) works if $\left\{a_{n}\right\}$ is decreasing.
The proof of Theorem 11 shows that a sequence that is increasing and bounded above is convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) This fact is used many times in dealing with infinite series in Sections 8.2 and 8.3.

Another use of Theorem 11 is indicated in Exercises 38-40.

8.1 EXERCISES

I. (a) What is a sequence?
(b) What does it mean to say that $\lim _{n \rightarrow \infty} a_{n}=8$?
(c) What does it mean to say that $\lim _{n \rightarrow \infty} a_{n}=\infty$?
2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.
3. List the first six terms of the sequence defined by

$$
a_{n}=\frac{n}{2 n+1}
$$

Does the sequence appear to have a limit? If so, find it.
4. List the first nine terms of the sequence $\{\cos (n \pi / 3)\}$. Does this sequence appear to have a limit? If so, find it. If not, explain why.

5-8 - Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.
5. $\left\{1,-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \ldots\right\}$
6. $\left\{-\frac{1}{4}, \frac{2}{9},-\frac{3}{16}, \frac{4}{25}, \ldots\right\}$
7. $\{2,7,12,17, \ldots\}$
8. $\{5,1,5,1,5,1, \ldots\}$

9-28 - Determine whether the sequence converges or diverges. If it converges, find the limit.
9. $a_{n}=\frac{3+5 n^{2}}{n+n^{2}}$
10. $a_{n}=\frac{n+1}{3 n-1}$
II. $a_{n}=\frac{2^{n}}{3^{n+1}}$
12. $a_{n}=\frac{\sqrt{n}}{1+\sqrt{n}}$
13. $a_{n}=\frac{(n+2)!}{n!}$
14. $a_{n}=\frac{n}{1+\sqrt{n}}$
15. $a_{n}=\frac{(-1)^{n-1} n}{n^{2}+1}$
16. $a_{n}=\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}$
17. $\left\{\frac{e^{n}+e^{-n}}{e^{2 n}-1}\right\}$
18. $a_{n}=\cos (2 / n)$
19. $\left\{n^{2} e^{-n}\right\}$
20. $\{\arctan 2 n\}$
21. $a_{n}=\frac{\cos ^{2} n}{2^{n}}$
22. $\{n \cos n \pi\}$
23. $a_{n}=\left(1+\frac{2}{n}\right)^{n}$
24. $a_{n}=\frac{\sin 2 n}{1+\sqrt{n}}$
25. $\{0,1,0,0,1,0,0,0,1, \ldots\}$
26. $a_{n}=\frac{(\ln n)^{2}}{n}$
27. $a_{n}=\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)$
28. $a_{n}=\frac{(-3)^{n}}{n!}$
29. If $\$ 1000$ is invested at 6% interest, compounded annually, then after n years the investment is worth $a_{n}=1000(1.06)^{n}$ dollars.
(a) Find the first five terms of the sequence $\left\{a_{n}\right\}$.
(b) Is the sequence convergent or divergent? Explain.
30. Find the first 40 terms of the sequence defined by

$$
a_{n+1}= \begin{cases}\frac{1}{2} a_{n} & \text { if } a_{n} \text { is an even number } \\ 3 a_{n}+1 & \text { if } a_{n} \text { is an odd number }\end{cases}
$$

and $a_{1}=11$. Do the same if $a_{1}=25$. Make a conjecture about this type of sequence.
31. Suppose you know that $\left\{a_{n}\right\}$ is a decreasing sequence and all its terms lie between the numbers 5 and 8 . Explain why the sequence has a limit. What can you say about the value of the limit?
32. (a) If $\left\{a_{n}\right\}$ is convergent, show that

$$
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} a_{n}
$$

(b) A sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1$ and $a_{n+1}=1 /\left(1+a_{n}\right)$ for $n \geqslant 1$. Assuming that $\left\{a_{n}\right\}$ is convergent, find its limit.

33-36 - Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
33. $a_{n}=\frac{1}{2 n+3}$
34. $a_{n}=\frac{2 n-3}{3 n+4}$
35. $a_{n}=\cos (n \pi / 2)$
36. $a_{n}=n+\frac{1}{n}$
37. Find the limit of the sequence

$$
\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots\}
$$

38. A sequence $\left\{a_{n}\right\}$ is given by $a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2+a_{n}}$.
(a) By induction or otherwise, show that $\left\{a_{n}\right\}$ is increasing and bounded above by 3. Apply the Monotonic Sequence Theorem to show that $\lim _{n \rightarrow \infty} a_{n}$ exists.
(b) Find $\lim _{n \rightarrow \infty} a_{n}$.
39. Use induction to show that the sequence defined by $a_{1}=1$, $a_{n+1}=3-1 / a_{n}$ is increasing and $a_{n}<3$ for all n. Deduce that $\left\{a_{n}\right\}$ is convergent and find its limit.
40. Show that the sequence defined by

$$
a_{1}=2 \quad a_{n+1}=\frac{1}{3-a_{n}}
$$

satisfies $0<a_{n} \leqslant 2$ and is decreasing. Deduce that the sequence is convergent and find its limit.

4I. (a) Fibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair which becomes productive at age 2 months. If we start with one newborn pair, how many pairs of rabbits will we have in the nth month? Show that the answer is f_{n}, where $\left\{f_{n}\right\}$ is the Fibonacci sequence defined in Example 3(c).
(b) Let $a_{n}=f_{n+1} / f_{n}$ and show that $a_{n-1}=1+1 / a_{n-2}$. Assuming that $\left\{a_{n}\right\}$ is convergent, find its limit.
42. (a) Let $a_{1}=a, a_{2}=f(a), a_{3}=f\left(a_{2}\right)=f(f(a)), \ldots$, $a_{n+1}=f\left(a_{n}\right)$, where f is a continuous function. If $\lim _{n \rightarrow \infty} a_{n}=L$, show that $f(L)=L$.
(b) Illustrate part (a) by taking $f(x)=\cos x, a=1$, and estimating the value of L to five decimal places.
43. We know that $\lim _{n \rightarrow \infty}(0.8)^{n}=0$ [from (8) with $r=0.8$]. Use logarithms to determine how large n has to be so that $(0.8)^{n}<0.000001$.
44. Use Definition 2 directly to prove that $\lim _{n \rightarrow \infty} r^{n}=0$ when $|r|<1$.
45. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]
46. (a) Show that if $\lim _{n \rightarrow \infty} a_{2 n}=L$ and $\lim _{n \rightarrow \infty} a_{2 n+1}=L$, then $\left\{a_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=L$.
(b) If $a_{1}=1$ and

$$
a_{n+1}=1+\frac{1}{1+a_{n}}
$$

find the first eight terms of the sequence $\left\{a_{n}\right\}$. Then use part (a) to show that $\lim _{n \rightarrow \infty} a_{n}=\sqrt{2}$. This gives the continued fraction expansion

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\cdots}}
$$

47. The size of an undisturbed fish population has been modeled by the formula

$$
p_{n+1}=\frac{b p_{n}}{a+p_{n}}
$$

where p_{n} is the fish population after n years and a and b are positive constants that depend on the species and its environment. Suppose that the population in year 0 is $p_{0}>0$.
(a) Show that if $\left\{p_{n}\right\}$ is convergent, then the only possible values for its limit are 0 and $b-a$.
(b) Show that $p_{n+1}<(b / a) p_{n}$.
(c) Use part (b) to show that if $a>b$, then $\lim _{n \rightarrow \infty} p_{n}=0$; in other words, the population dies out.
(d) Now assume that $a<b$. Show that if $p_{0}<b-a$, then $\left\{p_{n}\right\}$ is increasing and $0<p_{n}<b-a$. Show also that if $p_{0}>b-a$, then $\left\{p_{n}\right\}$ is decreasing and $p_{n}>b-a$. Deduce that if $a<b$, then $\lim _{n \rightarrow \infty} p_{n}=b-a$.

n	Sum of first n terms
1	0.50000000
2	0.75000000
3	0.87500000
4	0.93750000
5	0.96875000
6	0.98437500
7	0.99218750
10	0.99902344
15	0.99996948
20	0.99999905
25	0.99999997

If we try to add the terms of an infinite sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ we get an expression of the form

$$
\mathrm{I} \quad a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { or } \quad \sum a_{n}
$$

But does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

$$
1+2+3+4+5+\cdots+n+\cdots
$$

because if we start adding the terms we get the cumulative sums $1,3,6,10,15$, $21, \ldots$ and, after the nth term, we get $n(n+1) / 2$, which becomes very large as n increases.

However, if we start to add the terms of the series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots+\frac{1}{2^{n}}+\cdots
$$

we get $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \frac{63}{64}, \ldots, 1-1 / 2^{n}, \ldots$ The table shows that as we add more and more terms, these partial sums become closer and closer to 1 . In fact, by adding sufficiently many terms of the series we can make the partial sums as close as we like to 1 . So it seems reasonable to say that the sum of this infinite series is 1 and to write

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{n}}+\cdots=1
$$

- Compare with the improper integral

$$
\int_{1}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{1}^{t} f(x) d x
$$

To find this integral we integrate from 1 to t and then let $t \rightarrow \infty$. For a series, we sum from 1 to n and then let $n \rightarrow \infty$.

We use a similar idea to determine whether or not a general series (1) has a sum. We consider the partial sums

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3} \\
& s_{4}=a_{1}+a_{2}+a_{3}+a_{4}
\end{aligned}
$$

and, in general,

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

These partial sums form a new sequence $\left\{s_{n}\right\}$, which may or may not have a limit. If $\lim _{n \rightarrow \infty} s_{n}=s$ exists (as a finite number), then, as in the preceding example, we call it the sum of the infinite series $\sum a_{n}$.

2 DEFINITION Given a series $\Sigma_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote its nth partial sum:

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum a_{n}$ is called convergent and we write

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=s \quad \text { or } \quad \sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write $\sum_{n=1}^{\infty} a_{n}=s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s. Notice that

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

EXAMPLE I An important example of an infinite series is the geometric series

$$
a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1} \quad a \neq 0
$$

Each term is obtained from the preceding one by multiplying it by the common ratio r. (We have already considered the special case where $a=\frac{1}{2}$ and $r=\frac{1}{2}$ on page 420 .)

If $r=1$, then $s_{n}=a+a+\cdots+a=n a \rightarrow \pm \infty$. Since $\lim _{n \rightarrow \infty} s_{n}$ doesn't exist, the geometric series diverges in this case.

If $r \neq 1$, we have
and

$$
\begin{aligned}
s_{n} & =a+a r+a r^{2}+\cdots+a r^{n-1} \\
r s_{n} & =a r+a r^{2}+\cdots+a r^{n-1}+a r^{n}
\end{aligned}
$$

- Figure 1 provides a geometric demonstration of the result in Example 1. If the triangles are constructed as shown and s is the sum of the series, then, by similar triangles,

$$
\frac{s}{a}=\frac{a}{a-a r} \quad \text { so } \quad s=\frac{a}{1-r}
$$

FIGURE I

- In words: The sum of a convergent geometric series is

$$
\frac{\text { first term }}{1-\text { common ratio }}
$$

Subtracting these equations, we get

$$
\begin{aligned}
s_{n}-r s_{n} & =a-a r^{n} \\
s_{n} & =\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

3

If $-1<r<1$, we know from (8.1.8) that $r^{n} \rightarrow 0$ as $n \rightarrow \infty$, so

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}=\frac{a}{1-r}-\frac{a}{1-r} \lim _{n \rightarrow \infty} r^{n}=\frac{a}{1-r}
$$

Thus when $|r|<1$ the geometric series is convergent and its sum is $a /(1-r)$.
If $r \leqslant-1$ or $r>1$, the sequence $\left\{r^{n}\right\}$ is divergent by (8.1.8) and so, by Equation 3, $\lim _{n \rightarrow \infty} s_{n}$ does not exist. Therefore, the geometric series diverges in those cases.

We summarize the results of Example 1 as follows.

4 The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

If $|r| \geqslant 1$, the geometric series is divergent.

V EXAMPLE 2 Find the sum of the geometric series

$$
5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots
$$

SOLUTION The first term is $a=5$ and the common ratio is $r=-\frac{2}{3}$. Since $|r|=\frac{2}{3}<1$, the series is convergent by (4) and its sum is

$$
5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots=\frac{5}{1-\left(-\frac{2}{3}\right)}=\frac{5}{\frac{5}{3}}=3
$$

n	s_{n}
1	5.000000
2	1.666667
3	3.888889
4	2.407407
5	3.395062
6	2.736626
7	3.175583
8	2.882945
9	3.078037
10	2.947975

FIGURE 2

- Another way to identify a and r is to write out the first few terms:

$$
4+\frac{16}{3}+\frac{64}{9}+\cdots
$$

Module 8.2 explores a series that depends on an angle θ in a triangle and enables you to see how rapidly the series converges when θ varies.

EXAMPLE 3 Is the series $\sum_{n=1}^{\infty} 2^{2 n} 3^{1-n}$ convergent or divergent?
SOLUTION Let's rewrite the nth term of the series in the form ar^{n-1} :

$$
\sum_{n=1}^{\infty} 2^{2 n} 3^{1-n}=\sum_{n=1}^{\infty}\left(2^{2}\right)^{n} 3^{-(n-1)}=\sum_{n=1}^{\infty} \frac{4^{n}}{3^{n-1}}=\sum_{n=1}^{\infty} 4\left(\frac{4}{3}\right)^{n-1}
$$

We recognize this series as a geometric series with $a=4$ and $r=\frac{4}{3}$. Since $r>1$, the series diverges by (4).

V EXAMPLE 4 Write the number $2.3 \overline{17}=2.3171717 \ldots$ as a ratio of integers.

SOLUTION

$$
2.3171717 \ldots=2.3+\frac{17}{10^{3}}+\frac{17}{10^{5}}+\frac{17}{10^{7}}+\cdots
$$

After the first term we have a geometric series with $a=17 / 10^{3}$ and $r=1 / 10^{2}$. Therefore

$$
\begin{aligned}
2.3 \overline{17} & =2.3+\frac{\frac{17}{10^{3}}}{1-\frac{1}{10^{2}}}=2.3+\frac{\frac{17}{1000}}{\frac{99}{100}} \\
& =\frac{23}{10}+\frac{17}{990}=\frac{1147}{495}
\end{aligned}
$$

EXAMPLE 5 Find the sum of the series $\sum_{n=0}^{\infty} x^{n}$, where $|x|<1$.
SOLUTION Notice that this series starts with $n=0$ and so the first term is $x^{0}=1$. (With series, we adopt the convention that $x^{0}=1$ even when $x=0$.) Thus

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

This is a geometric series with $a=1$ and $r=x$. Since $|r|=|x|<1$, it converges and (4) gives

5

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

EXAMPLE 6 Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, and find its sum.
SOLUTION This is not a geometric series, so we go back to the definition of a convergent series and compute the partial sums.

$$
s_{n}=\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}
$$

We can simplify this expression if we use the partial fraction decomposition

$$
\frac{1}{i(i+1)}=\frac{1}{i}-\frac{1}{i+1}
$$

- Notice that the terms cancel in pairs. This is an example of a telescoping sum: Because of all the cancellations, the sum collapses (like a pirate's collapsing telescope) into just two terms.
- Figure 3 illustrates Example 6 by showing the graphs of the sequence of terms $a_{n}=1 /[n(n+1)]$ and the sequence $\left\{s_{n}\right\}$ of partial sums. Notice that $a_{n} \rightarrow 0$ and $s_{n} \rightarrow 1$. See Exercises 36 and 37 for two geometric interpretations of Example 6.

FIGURE 3

- The method used in Example 7 for showing that the harmonic series diverges is due to the French scholar Nicole Oresme (1323-1382).
(see Section 6.3). Thus we have

$$
\begin{aligned}
s_{n} & =\sum_{i=1}^{n} \frac{1}{i(i+1)}=\sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right) \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1-0=1
$$

Therefore, the given series is convergent and

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

(v EXAMPLE 7 Show that the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

is divergent.
SOLUTION For this particular series it's convenient to consider the partial sums s_{2}, $s_{4}, s_{8}, s_{16}, s_{32}, \ldots$ and show that they become large.

$$
\begin{aligned}
s_{2} & =1+\frac{1}{2} \\
s_{4} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)=1+\frac{2}{2} \\
s_{8} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right) \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right) \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\
s_{16} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{4}{2}
\end{aligned}
$$

Similarly, $s_{32}>1+\frac{5}{2}, s_{64}>1+\frac{6}{2}$, and in general

$$
s_{2^{n}}>1+\frac{n}{2}
$$

This shows that $s_{2^{n}} \rightarrow \infty$ as $n \rightarrow \infty$ and so $\left\{s_{n}\right\}$ is divergent. Therefore, the harmonic series diverges.

6 THEOREM If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.

PROOF Let $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. Then $a_{n}=s_{n}-s_{n-1}$. Since $\sum a_{n}$ is convergent, the sequence $\left\{s_{n}\right\}$ is convergent. Let $\lim _{n \rightarrow \infty} s_{n}=s$. Since $n-1 \rightarrow \infty$ as $n \rightarrow \infty$, we also have $\lim _{n \rightarrow \infty} s_{n-1}=s$. Therefore

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=s-s=0
$$

NOTE I With any series Σa_{n} we associate two sequences: the sequence $\left\{s_{n}\right\}$ of its partial sums and the sequence $\left\{a_{n}\right\}$ of its terms. If $\sum a_{n}$ is convergent, then the limit of the sequence $\left\{s_{n}\right\}$ is s (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence $\left\{a_{n}\right\}$ is 0 .
(2) NOTE 2 The converse of Theorem 6 is not true in general. If $\lim _{n \rightarrow \infty} a_{n}=0$, we cannot conclude that Σa_{n} is convergent. Observe that for the harmonic series $\Sigma 1 / n$ we have $a_{n}=1 / n \rightarrow 0$ as $n \rightarrow \infty$, but we showed in Example 7 that $\sum 1 / n$ is divergent.

THE TEST FOR DIVERGENCE If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent, then it is convergent, and so $\lim _{n \rightarrow \infty} a_{n}=0$.

EXAMPLE 8 Show that the series $\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$ diverges.

SOLUTION

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{5 n^{2}+4}=\lim _{n \rightarrow \infty} \frac{1}{5+4 / n^{2}}=\frac{1}{5} \neq 0
$$

So the series diverges by the Test for Divergence.
NOTE 3 If we find that $\lim _{n \rightarrow \infty} a_{n} \neq 0$, we know that $\sum a_{n}$ is divergent. If we find that $\lim _{n \rightarrow \infty} a_{n}=0$, we know nothing about the convergence or divergence of $\sum a_{n}$. Remember the warning in Note 2: If $\lim _{n \rightarrow \infty} a_{n}=0$, the series $\sum a_{n}$ might converge or it might diverge.

8 THEOREM If $\sum a_{n}$ and Σb_{n} are convergent series, then so are the series $\sum c a_{n}$ (where c is a constant), $\Sigma\left(a_{n}+b_{n}\right)$, and $\Sigma\left(a_{n}-b_{n}\right)$, and
(i) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
(iii) $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

These properties of convergent series follow from the corresponding Limit Laws for Sequences in Section 8.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

$$
s_{n}=\sum_{i=1}^{n} a_{i} \quad s=\sum_{n=1}^{\infty} a_{n} \quad t_{n}=\sum_{i=1}^{n} b_{i} \quad t=\sum_{n=1}^{\infty} b_{n}
$$

The nth partial sum for the series $\sum\left(a_{n}+b_{n}\right)$ is

$$
u_{n}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)
$$

and, using Equation 5.2.10, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} u_{n} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}+\lim _{n \rightarrow \infty} \sum_{i=1}^{n} b_{i}=\lim _{n \rightarrow \infty} s_{n}+\lim _{n \rightarrow \infty} t_{n}=s+t
\end{aligned}
$$

Therefore, $\Sigma\left(a_{n}+b_{n}\right)$ is convergent and its sum is

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=s+t=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

EXAMPLE 9 Find the sum of the series $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)$.
SOLUTION The series $\Sigma 1 / 2^{n}$ is a geometric series with $a=\frac{1}{2}$ and $r=\frac{1}{2}$, so

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
$$

In Example 6 we found that

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

So, by Theorem 8, the given series is convergent and

$$
\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)=3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}+\sum_{n=1}^{\infty} \frac{1}{2^{n}}=3 \cdot 1+1=4
$$

NOTE 4 A finite number of terms doesn't affect the convergence or divergence of a series. For instance, suppose that we were able to show that the series

$$
\sum_{n=4}^{\infty} \frac{n}{n^{3}+1}
$$

is convergent. Since

$$
\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}=\frac{1}{2}+\frac{2}{9}+\frac{3}{28}+\sum_{n=4}^{\infty} \frac{n}{n^{3}+1}
$$

it follows that the entire series $\sum_{n=1}^{\infty} n /\left(n^{3}+1\right)$ is convergent. Similarly, if it is known that the series $\Sigma_{n=N+1}^{\infty} a_{n}$ converges, then the full series

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{N} a_{n}+\sum_{n=N+1}^{\infty} a_{n}
$$

is also convergent.
I. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?
2. Explain what it means to say that $\sum_{n=1}^{\infty} a_{n}=5$.

3-8 - Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
3. $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots$
4. $1+0.4+0.16+0.064+\cdots$
5. $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^{n-1}$
6. $\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}}$
7. $\sum_{n=0}^{\infty} \frac{\pi^{n}}{3^{n+1}}$
8. $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n}}$

9-18 - Determine whether the series is convergent or divergent. If it is convergent, find its sum.
9. $\sum_{n=1}^{\infty} \frac{1}{2 n}$
10. $\sum_{n=1}^{\infty} \frac{n+1}{2 n-3}$
II. $\sum_{k=2}^{\infty} \frac{k^{2}}{k^{2}-1}$
12. $\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^{2}}$
13. $\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}$
14. $\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}$
15. $\sum_{n=1}^{\infty} \sqrt[n]{2}$
16. $\sum_{n=1}^{\infty}\left[(0.8)^{n-1}-(0.3)^{n}\right]$
17. $\sum_{n=1}^{\infty} \arctan n$
18. $\sum_{k=1}^{\infty}(\cos 1)^{k}$

19-22 - Determine whether the series is convergent or divergent by expressing s_{n} as a telescoping sum (as in Example 6). If it is convergent, find its sum.
19. $\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}$
20. $\sum_{n=1}^{\infty} \frac{2}{n^{2}+4 n+3}$
21. $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$
22. $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$

23-26 - Express the number as a ratio of integers.
23. $0 . \overline{2}=0.2222 \ldots$
24. $0 . \overline{73}=0.73737373 \ldots$
25. $3 . \overline{417}=3.417417417 \ldots$
26. $6.2 \overline{54}=6.2545454 \ldots$

27-29 - Find the values of x for which the series converges. Find the sum of the series for those values of x.
27. $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$
28. $\sum_{n=0}^{\infty} 2^{n}(x+1)^{n}$
29. $\sum_{n=0}^{\infty} \frac{\cos ^{n} x}{2^{n}}$
30. We have seen that the harmonic series is a divergent series whose terms approach 0 . Show that

$$
\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)
$$

is another series with this property.
31. If the nth partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is

$$
s_{n}=\frac{n-1}{n+1}
$$

find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
32. If the nth partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is $s_{n}=3-n 2^{-n}$, find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
33. When money is spent on goods and services, those that receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending D dollars. Suppose that each recipient of spent money spends $100 c \%$ and saves $100 s \%$ of the money that he or she receives. The values c and s are called the marginal propensity to consume and the marginal propensity to save and, of course, $c+s=1$.
(a) Let S_{n} be the total spending that has been generated after n transactions. Find an equation for S_{n}.
(b) Show that $\lim _{n \rightarrow \infty} S_{n}=k D$, where $k=1 / s$. The number k is called the multiplier. What is the multiplier if the marginal propensity to consume is 80% ?
Note: The federal government uses this principle to justify deficit spending. Banks use this principle to justify lending a large percentage of the money that they receive in deposits.
34. A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height $r h$, where $0<r<1$. Suppose that the ball is dropped from an initial height of H meters.
(a) Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.
(b) Calculate the total time that the ball travels. (Use the fact that the ball falls $\frac{1}{2} g t^{2}$ meters in t seconds.)
(c) Suppose that each time the ball strikes the surface with velocity v it rebounds with velocity $-k v$, where
$0<k<1$. How long will it take for the ball to come to rest?
35. What is the value of c if $\sum_{n=2}^{\infty}(1+c)^{-n}=2$?
36. Graph the curves $y=x^{n}, 0 \leqslant x \leqslant 1$, for $n=0,1,2,3$, $4, \ldots$ on a common screen. By finding the areas between successive curves, give a geometric demonstration of the fact, shown in Example 6, that

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

37. The figure shows two circles C and D of radius 1 that touch at $P . T$ is a common tangent line; C_{1} is the circle that touches C, D, and $T ; C_{2}$ is the circle that touches C, D, and $C_{1} ; C_{3}$ is the circle that touches C, D, and C_{2}. This procedure can be continued indefinitely and produces an infinite sequence of circles $\left\{C_{n}\right\}$. Find an expression for the diameter of C_{n} and thus provide another geometric demonstration of Example 6.

38. A right triangle $A B C$ is given with $\angle A=\theta$ and $|A C|=b$. $C D$ is drawn perpendicular to $A B, D E$ is drawn perpendicular to $B C, E F \perp A B$, and this process is continued indefinitely as shown in the figure. Find the total length of all the perpendiculars

$$
|C D|+|D E|+|E F|+|F G|+\cdots
$$

in terms of b and θ.

39. What is wrong with the following calculation?

$$
\begin{aligned}
0 & =0+0+0+\cdots \\
& =(1-1)+(1-1)+(1-1)+\cdots \\
& =1-1+1-1+1-1+\cdots \\
& =1+(-1+1)+(-1+1)+(-1+1)+\cdots \\
& =1+0+0+0+\cdots=1
\end{aligned}
$$

(Guido Ubaldus thought that this proved the existence of God because "something has been created out of nothing.")
40. Suppose that $\sum_{n=1}^{\infty} a_{n}\left(a_{n} \neq 0\right)$ is known to be a convergent series. Prove that $\sum_{n=1}^{\infty} 1 / a_{n}$ is a divergent series.

4I. Prove part (i) of Theorem 8.
42. If $\sum a_{n}$ is divergent and $c \neq 0$, show that $\sum c a_{n}$ is divergent.
43. If $\sum a_{n}$ is convergent and $\sum b_{n}$ is divergent, show that the series $\sum\left(a_{n}+b_{n}\right)$ is divergent. [Hint: Argue by contradiction.]
44. If $\sum a_{n}$ and Σb_{n} are both divergent, is $\Sigma\left(a_{n}+b_{n}\right)$ necessarily divergent?
45. Suppose that a series $\sum a_{n}$ has positive terms and its partial sums s_{n} satisfy the inequality $s_{n} \leqslant 1000$ for all n. Explain why $\sum a_{n}$ must be convergent.
46. The Fibonacci sequence was defined in Section 8.1 by the equations

$$
f_{1}=1, \quad f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2} \quad n \geqslant 3
$$

Show that each of the following statements is true.
(a) $\frac{1}{f_{n-1} f_{n+1}}=\frac{1}{f_{n-1} f_{n}}-\frac{1}{f_{n} f_{n+1}}$
(b) $\sum_{n=2}^{\infty} \frac{1}{f_{n-1} f_{n+1}}=1$
(c) $\sum_{n=2}^{\infty} \frac{f_{n}}{f_{n-1} f_{n+1}}=2$
47. The Cantor set, named after the German mathematician Georg Cantor (1845-1918), is constructed as follows. We start with the closed interval $[0,1]$ and remove the open interval $\left(\frac{1}{3}, \frac{2}{3}\right)$. That leaves the two intervals $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ and we remove the open middle third of each. Four intervals remain and again we remove the open middle third of each of them. We continue this procedure indefinitely, at each step removing the open middle third of every interval that remains from the preceding step. The Cantor set consists of
the numbers that remain in $[0,1]$ after all those intervals have been removed.
(a) Show that the total length of all the intervals that are removed is 1 . Despite that, the Cantor set contains infinitely many numbers. Give examples of some numbers in the Cantor set.
(b) The Sierpinski carpet is a two-dimensional counterpart of the Cantor set. It is constructed by removing the center one-ninth of a square of side 1 , then removing the centers of the eight smaller remaining squares, and so on. (The figure shows the first three steps of the construction.) Show that the sum of the areas of the removed squares is 1 . This implies that the Sierpinski carpet has area 0 .

48. (a) A sequence $\left\{a_{n}\right\}$ is defined recursively by the equation $a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n-2}\right)$ for $n \geqslant 3$, where a_{1} and a_{2} can be any real numbers. Experiment with various values of a_{1} and a_{2} and use your calculator to guess the limit of the sequence.
(b) Find $\lim _{n \rightarrow \infty} a_{n}$ in terms of a_{1} and a_{2} by expressing $a_{n+1}-a_{n}$ in terms of $a_{2}-a_{1}$ and summing a series.
49. Consider the series

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)!}
$$

(a) Find the partial sums s_{1}, s_{2}, s_{3}, and s_{4}. Do you recognize the denominators? Use the pattern to guess a formula for s_{n}.
(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find its sum.
50. In the figure there are infinitely many circles approaching the vertices of an equilateral triangle, each circle touching other circles and sides of the triangle. If the triangle has sides of length 1 , find the total area occupied by the circles.

8.3 THE INTEGRAL AND COMPARISON TESTS

n	$s_{n}=\sum_{i=1}^{n} \frac{1}{i^{2}}$
5	1.4636
10	1.5498
50	1.6251
100	1.6350
500	1.6429
1000	1.6439
5000	1.6447

In general, it is difficult to find the exact sum of a series. We were able to accomplish this for geometric series and the series $\sum 1 /[n(n+1)]$ because in each of those cases we could find a simple formula for the nth partial sum s_{n}. But usually it isn't easy to compute $\lim _{n \rightarrow \infty} S_{n}$. Therefore, in this section and the next we develop tests that enable us to determine whether a series is convergent or divergent without explicitly finding its sum.

In this section we deal only with series with positive terms, so the partial sums are increasing. In view of the Monotonic Sequence Theorem, to decide whether a series is convergent or divergent, we need to determine whether the partial sums are bounded or not.

TESTING WITH AN INTEGRAL

Let's investigate the series whose terms are the reciprocals of the squares of the positive integers:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots
$$

There's no simple formula for the sum s_{n} of the first n terms, but the computergenerated table of values given in the margin suggests that the partial sums are approaching a number near 1.64 as $n \rightarrow \infty$ and so it looks as if the series is convergent.

