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1. INTRODUCTION 

Let   be an open bounded subset 

of  ℝ𝑁 ( 3)N  , with smooth boundary  , 

u

v




 is the outer unit normal derivative. 

Assume that 𝑎:   × ℝ → ℝ is such that 

the mapping 𝜑:   × ℝ → ℝ defined by  

 , , for t 0,
( , )

0, for t=0,

a x t t
x t

 
 


 

satisfies the condition H( ) : for all 

x , ( ,.)x  is an odd, strictly 

increasing homeomorphism from ℝ onto 

ℝ. 

In this work, we deal with the 

following Kirchhoff type problems with 

Neumann boundary condition

    ( ( )) , , u ( , ) ( ) in     

0 on   ,

M L u div a x u u a x u f x u g x

u

v

        
 


  


 where 𝑓:   × ℝ → ℝ is a Carathéodory 

function, 𝑔:  → ℝ is a perturbation term 

and 𝑀(𝑡): ℝ+ = [0, +∝) → ℝ+ is a 

nondecreasing continuous function, and 

the functional L defined by      
      ( ) : , , ,     (2)L u x u x u dx



   

where 

Φ(𝑥, 𝑡) = ∫ 𝜑(𝑥, 𝑠)𝑑𝑠,
𝑡

0
  ∀𝑥 ∈ 𝛺, 𝑡 ≥ 0. 

Problem (1) is a generalization of a 

model introduced by Kirchhoff [16], who 

studied the following equation 
22 2
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Problem (3) extends the classical 

D’Alembert’s wave equation by 

considering the effects of the changes in 

the length of the strings during the 

vibrations. Latter, the study of Kirchhoff 

type equations has already been extended 

to the case involving the p-Laplacian 

( , ) in 
p

pM u dx u f x u


 
     

 


see [7, 13]. On the other hand, there is a 

great number of papers which have dealt 

with nonlocal p(x)-Laplacian equations, 

we refer the reader to [3, 8, 18] and the 

references therein for an overview on this 

subject. 

We point out the fact that if 𝑀(𝑡) ≡

1, problem (1) becomes a nonlinear and 

non-homogeneous problem, which has 

been received considerable attention in 

recent years and studied by some authors 

in Orlicz-Sobolev spaces, see [1, 4, 5, 23] 

for the advances and references of this 

(3)
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area. However, to our knowledge, there is 

not a great number of papers which have 

dealt with nonlocal and non-

homogeneous equations through Orlicz-

Sobolev spaces, we quoted some 

interesting papers [6, 12, 14]. In [12], 

Figueiredo et al. studied the existence of 

solutions for a class of nonlocal and non-

homogeneous equations using 

Krasnoselskiis genus. In [14], the authors 

considered problem (1) in the special case 

when 𝑓(𝑥, 𝑢) = 𝜆|𝑢|𝑞(𝑥)−2𝑢. In [6], the 

author studied the existence of solutions 

for the problem using a variational 

principle due to Ricceri [21]. Motivated 

by the contributions cited above, in this 

paper we study the existence of nontrivial 

solution for the nonlocal problem (1) with 

perturbation g in Orlicz-Sobolev spaces. 

Our proofs are essentially based on the 

mountain pass theorem combined with 

the Ekeland variational principle. 

2. THE FUNCTIONAL RAMEWORK 

Here, we state some interesting 

properties of the theory of Orlicz- 

Sobolev spaces that will be useful to 

discuss problem (1). To be more precise, 

for the function ( , )x t  which satisfies 

condition H ( ) , we assume that the 

function 

Φ(𝑥, 𝑡) = ∫ 𝜑(𝑥, 𝑠)𝑑𝑠,
𝑡

0
  𝑥 ∈ Ω, 𝑡 ≥ 0 

belongs to class Φ (see [20], p. 33), i.e., 

the function Φ satisfies the following 

conditions:  

for all 𝑥 ∈ Ω,  𝜑(𝑥, . ):  [0, +∞] → ℝ is 

a  nondecreasing continuous function, 

with  Φ(𝑥, 0) = 0 and Φ(𝑥, 𝑡) > 0 whenever 

𝑡 > 0, lim
t→∞

Φ(x, t) = +∞, 
 

2( )  for every 𝑡 > 0, Φ(. , t): Ω → ℝ is a 

measurable function. 

Since ( ,.)x  satisfies condition 

H( ) , we deduce that ( ,.)x  is convex 

and increasing from ℝ+ → ℝ+. 

Now, for the function   introduced 

above, we define the generalized Orlicz 

space 

 
0

( ) : ,measurable; lim , ( ) 0 .L u x u x dx










 
     

 


The space ( )L   is a Banach space 

endowed with the Luxemburg norm 

‖𝑢‖𝛷 = inf {𝜇 > 0; ∫ Φ (𝑥,
|𝑢(𝑥)|

𝜇
) 𝑑𝑥 ≤ 1

𝛺
}

  or the equivalent norm (the Orlicz norm) 

 sup dx , ( ), , ( ) x 1 ,u uv v L x v x d



 

  
     

  
 

where   denotes the conjugate Young 

function of  , that is, for each 𝑥 ∈ Ω and 

𝑡 ≥ 0,

 Φ(𝑥, 𝑡) = 𝑠𝑢𝑝
𝑠>0

{𝑡𝑠 − Φ(𝑥, 𝑠); 𝑠 ∈ ℝ}. 

Furthermore, for Φ and   conjugate 

Young functions, Holder’s inequality 

holds true 

. . , ( ), ( ),uvdx C u v u L v L 

 



      

where C is a positive constant. 

In this paper, we assume that there 

exist two positive constants   and   

such that 

( , )
1 ,  ,   0. (4)

( , )

t x t
x t

x t


        

  

The above relation implies that   

satisfies the 
2-condition, i.e 

( ,2 ) . ( , ),   ,   0,x t K x t x t           (5) 

where K is a positive constant. 

Furthermore, we assume that   

satisfies the following condition: 

For each x  the function  ,t x t  

is convex on [0, +∞).                             (6) 

Relations (5) and (6) assure that 

( )L   is an uniformly convex space and 

thus, a reflexive space. 

1( )



Here, we give some relations 

between the norm .

 and the modular: 

 ( ) : , ( )u x u x dx



  . 

Proposition 2.1 ([19]). Assume that (4), 

then the following relations hold: 

( )                          (7)u u u
 

 
   

for all ( )u L   with 1,u

  

( )        (8)u u u
 

 
 

 

for all ( )u L   with 1.u



 
We denote by 1, ( )W    the 

corresponding generalized Orlicz-

Sobolev space for problem (1), defined 

by 

1, ( ) ( ); ( ),  1,..., ,
i

u
W u L L i N

x

   
       

 

equipped with the equivalent norms 

 1, 2,
, max , ,u u u u u u

    
    

‖𝑢‖ = inf {𝜇 > 0; ∫ [Φ (𝑥,
|𝑢(𝑥)|

𝜇
) +

𝛺

                    Φ (𝑥,
|𝛻𝑢(𝑥)|

𝜇
)] 𝑑𝑥 ≤ 1}.                 (9)

            
 

More precisely, (see, e.g [19]) for 

every 𝑢 ∈ 𝑊1,Φ(𝛺) we have:

 ‖𝑢‖ ≤ 2‖𝑢‖2,Φ ≤ 2‖𝑢‖1,Φ ≤ 4‖𝑢‖. 

The generalized Orlicz-Sobolev 

space 𝑊1,Φ(𝛺) endowed with one of the 

above norms is a reflexive Banach space. 

In the following, we will use the norm ‖. ‖ 

on 𝑋: = 𝑊1,Φ(𝛺). 

Proposition 2.2 ([19]). The 

following relations hold: 

   , ( ) , ( )x u x x u x dx u




       

for all u X  with 1,u   

   , ( ) , ( )x u x x u x dx u




       

for all u X  with 1.u   

Remark 2.3. Assuming that   and 

  belong to class   and there exists 

two positives constants k1; k2 and 

1( ) ( ),  ( ) 0x L x     a.e. u  such that 

for all x ∈ Ω, t ≥ 0, 

Ψ(x, t) ≤ k1Φ(x, k2. t) + η(x) ≥ 0,   (10) 

then there exists a continuous 

embedding ( ) ( )L L     (see [20, 

Theorem 8.5]). We point out that if (10) 

holds with inf ( ,1) 0, inf ( ,1) 0,
x x

x x
 
   

then 1, ( )W    is continuously embedded 

in 1, ( ).W    

In this paper, we study the problem 

(1) in the particular case when   

satisfies: 
( )

. ( , ), , 0,
p x

M t x t x t    
  

where 0M   is a positive constant and 

the function ( ) ( )p x C   with 

1 : inf ( ) : max ( ) .
x x

p p x p p x N 

 
    

Here, 𝐶+(Ω) = {ℎ ∈ 𝐶(Ω): ℎ(𝑥) > 1, ∀𝑥 ∈ Ω}. 

We define the variable exponent 

Lebesgue space by 

( )( ) ( ) : ,measuable: ( ) .
p xp xL u u x dx



 
     

 


This space endowed with the Luxemburg 

norm, 
( )

( )

( )
inf 0 : 1

p x

p x

u x
u dx




  
   

  
  

is a separable and reflexive Banach 

space. Denoting by 
' ( ) ( )p xL   the conjugate 

space of ( ) ( )p xL   where 
'

1 1
1

( ) ( )p x p x
  ; 

for any ( ) ( )p xu L   and 
' ( ) ( )p xv L   we 

have the following Holder type inequality  

'' ( ) ( )

1 1
p x p x

uv dx u v
p p 



 
  
 

 . 

Now, we introduce the modular of the 

Lebesgue-Sobolev space ( ) ( )p xL   as 

mapping 𝜌𝑝(𝑥): 𝐿𝑝(𝑥)(𝛺) → ℝ, defined by 
( ) ( )

( ) ( ) ,  ( ).
p x p x

p x u u dx u L


     

 

(11)

 

(12)

 



In the following proposition, we give 

some relations between the Luxemburg 

norm and the modular. 

Proposition 2.4 ([10]). If 
( ), ( )p x

nu u L  , then following properties 

hold true: 

(1) 
( )( ) ( ) ( )

1 ( ) ;
p p

p xp x p x p x
u u u u

 

     

(2) 
( )( ) ( ) ( )

1 ( ) ;
p p

p xp x p x p x
u u u u

 

     

(3) 
( )( )

lim 0 lim ( ) 0;n p x np xn n
u u

 
    

(4) 
( )( )

lim lim ( ) .n p x np xn n
u u

 
     

Next, we define the variable exponent 

Sobolev space 1, ( ) ( )p xW   by 

 1, ( ) ( ) ( )( ) ( ) :   ( ) .p x p x p xW u L u L        

endowed with the norm 

1, ( ) ( ) ( ) ( )
,p xW p x p x

u u u

    

The space 1, ( ) ( )p xW   is separable and 

reflexive. 

Proposition 2.5 ([10]). For , ( )p r C 

such that * *( ) ( ) ( ( ) ( ))r x p x r x p x   for 

all x , there is a continuous 

(compact) embedding 

 

where  

*

(x)
( )

( )( )

( ) .

Np
if p x N

N p xp x

if p x N




 
 

 

Before stating our results, we make the 

following assumptions on the functions 

𝑓(𝑥, 𝑡) and 𝑀(𝑡) as follows: 

 (m1) 𝑀(𝑡) is a nondecreasing continuous 

function, and there exists m0 > 0 such that 

0( )M t m  for all 𝑡 ≥ 0. 

(m2) There exists 𝜎 ∈ (𝛽/𝑞−, 1) such that 

ˆ ( ) ( ) ,   0,M t M t t t   

where 
0

ˆ ( ) ( ) ,   0.

t

M t M s ds t    

 ( ) 1

1( ) ( , ) 0,
p x

f f x t o t as t


 

uniformly for x . 

 q( ) 1

2( ) ( , ) ,
x

f f x t o t as t


   

uniformly for x , where 

( ) ( )q x C   such that *( ) ( ).q x p x  

3( )f  there exists max{ , }p q    such 

that 

𝜃𝐹(𝑥, 𝑡): = 𝜃 ∫  𝑓(𝑥, 𝑠)𝑑𝑠 ≤ 𝑡𝑓(𝑥, 𝑡)
𝑡

0
  

∀𝑡 ∈ ℝ and 𝑥 ∈ Ω, where ,   are given 

in (4) and assumption (𝑚2) respectively. 

4
{ : 1}

( ) inf ( , ) 0.
x t

f F x t
 

  

We denote by J the energy functional 

associated with problem (1), that is, 

(.) : (.) (.),J I H   

where 𝐼, 𝐻:   𝑋 → ℝ are defined as follows  

𝐼(𝑢) = �̂�(𝐿(𝑢)), 

𝐻(𝑢) = ∫ 𝐹(𝑥, 𝑢)𝑑𝑥 + ∫ 𝑔(𝑥)𝑢𝑑𝑥,
𝛺𝛺

     (13) 

where L defined by (2). Then, 𝐽 ∈

𝐶1(𝑋, ℝ) and 𝑢 ∈ 𝑋 is a weak solution of 

(1) if and only if u is a critical point of J. 

Moreover, we have 
⟨𝐽′(𝑢), 𝑣⟩ = 𝑀(𝐿(𝑢)) ∫ (𝑎(𝑥, |𝛻𝑢|)𝛻𝑢𝛻𝑣 +

𝛺

𝑎(𝑥, |𝑢|)𝑢𝑣)𝑑𝑥 − ∫ 𝑓(𝑥, 𝑢
𝛺

)𝑣𝑑𝑥 − ∫ 𝑔(𝑥)𝑣𝑑𝑥,
𝛺

  

for all 𝑣 ∈ 𝑋. 

We need the following lemma for the 

proofs of our main results. 

Lemma 2.6. If the condition (m1) 

holds, then we have the following 

assertions: 

(i) I is sequentially weakly lower 

semicontinuous and coercive; 

(ii) *' :I X X  is strictly monotone; 

(iii)  I’ is of type (S+), i.e. if 𝑢𝑛 ⇀ 𝑢 

weakly in X,  and  
' 'lim ( ) ( ), 0,n n

n
I u I u u u


    

then 𝑢𝑛 → 𝑢 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛  𝑋. 

Proof. (i) Since 

0
ˆ ( ) ( ) 0M t M t m   , M̂  is an 



increasing function on ℝ+. By using the 

fact that the the functional L defined by 

(2) is sequentially weakly lower 

semicontinuous (see [19]), we see that I 

is sequentially weakly lower 

semicontinuous. Obviously, thanks to 

Proposition 2.2 and (m1), for each u X  

such that 1u   we have 

           𝐼(𝑢) ≥ 𝑚0𝐿(𝑢) ≥ 𝑚0‖𝑢‖𝛼 .           (14) 

So, I is coercive. 

(ii) Consider the functional L, whose 

ˆGateaux  derivative at point u X  is 

given by 

 '( ), ( , ) ( , ,L u v a x u u v a x u uv dx


    

 for all v X . 

Taking into account [15, Lemma 3.2], 'L  

is strictly monotone. So, by [24, 

Proposition 25.10], L is strictly convex. 

Moreover, since M is nondecreasing, �̂� is 

convex in [0, ] . Thus, for every 

,u v X  with ,u v  and every 

, (0,1)s t  with 1s t  , one has 

   ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( )) ( ( )).M L su tv M sL u tL v sM L u tM L v    

From this, I is strictly convex, and, as 

already said, that 'I  is strictly monotone. 

 (iii) From (ii), if  𝑢𝑛 ⇀ 𝑢 as 𝑛 →∝ in 𝑋 

and 𝑙𝑖𝑚
𝑛→+∞
̅̅ ̅̅ ̅̅ ̅〈𝐼′(𝑢𝑛) − 𝐼′(𝑢), 𝑢𝑛 − 𝑢〉 = 0, we 

obtain 

𝑙𝑖𝑚
𝑛→+∞

⟨𝐼′(𝑢𝑛) − 𝐼′(𝑢), 𝑢𝑛 − 𝑢⟩ = 0, 

we also have 

        𝑙𝑖𝑚
𝑛→+∞

⟨𝐼′(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ = 0,             (15) 

which yields 

𝑙𝑖𝑚
𝑛→+∞

𝑀(𝐿(𝑢𝑛)) ∫ (𝑎(𝑥, |𝛻𝑢𝑛|)𝛻𝑢𝑛𝛻(𝑢𝑛 − 𝑢)
𝛺

+ 𝑎(𝑥, |𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢))𝑑𝑥

= 0. 

Since 𝑢𝑛 ⇀ 𝑢 in X, it follows that {‖𝑢𝑛‖} is 

bounded sequence of real number. From 

the equivalent norms in relation (9), we 

see that {‖𝑢𝑛‖Φ} and {‖|𝛻𝑢𝑛|‖Φ} are 

bounded sequences of real numbers. 

Then, Proposition 2.1 yields that the 

sequence {𝐿(𝑢𝑛)} is bounded, up to 

subsequence, there is 𝑡0 ≥ 0 such that 

𝐿(𝑢𝑛) → 𝑡0. The fact that M is continuous, 

𝑀(𝐿(𝑢𝑛)) → 𝑀(𝑡0)    𝑚0,   as  𝑛 → +∞. 

This and (16) imply 

𝑙𝑖𝑚
𝑛→+∞

∫ (𝑎(𝑥, |𝛻𝑢𝑛|)𝛻𝑢𝑛𝛻(𝑢𝑛 − 𝑢) +
𝛺

                 𝑎(𝑥, |𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢)) 𝑑𝑥 = 0.        (17)  

In the same way, 

𝑙𝑖𝑚
𝑛→+∞

∫ (𝑎(𝑥, |𝛻𝑢|)𝛻𝑢𝛻(𝑢𝑛 − 𝑢) +
𝛺

                        𝑎(𝑥, |𝑢|)𝑢(𝑢𝑛 − 𝑢))𝑑𝑥 = 0. (18) 

Then, we obtain by using relations (17) 

and (18) that 

𝑜𝑛(1) = ∫ (𝑎(𝑥, |𝛻𝑢𝑛|)𝛻𝑢𝑛
𝛺

− 𝑎(𝑥, |𝛻𝑢|)𝛻𝑢)𝛻(𝑢𝑛 − 𝑢)𝑑𝑥

+ ∫ (𝑎(𝑥, |𝑢𝑛|)𝑢𝑛
𝛺

− 𝑎(𝑥, |𝑢|)𝑢)(𝑢𝑛

− 𝑢)𝑑𝑥.                                 (19) 

Using [17, Theorem 4] we obtain the 

strong convergence of {𝑢𝑛} in X, which 

ends the proof of (iii). 

3. MAIN RESULTS AND PROOFS 

Throughout the sequel and for 

simplicity, we use ci (i = 1,2, ..), to denote 

the general nonnegative or positive 

constants. The first result of this paper can 

be described as follows. 

Theorem 3.1. Assume that (m1), 

(f1), (f2) hold and suppose that q   . 

Then, problem (1.1) has a weak solution, 

provided that 𝑔 ∈ 𝐿𝑝′(𝑥)(𝛺) and 𝑔 ≢ 0. 

Proof. By conditions (f1) and (f2),   it 

follows that for any 0   there exists 

( ) 0c c    depending on   such that 

    |𝐹(𝑥, 𝑡)| ≤
𝜀

𝑝(𝑥)
|𝑡|𝑝(𝑥) +

𝐶𝜀

𝑞(𝑥)
|𝑡|𝑞(𝑥)    (20) 

for all (𝑥, 𝑡) ∈ Ω × ℝ. 

Together with (𝑚1), and using Holder’s 

inequality (12), we have 



  ( )

( )

ˆ( ) ( ,| |) ( ,| |) | |

             | | ( ) ( )

( ) p x

q x

J u M x u x u dx u dx
p

u dx g x u x x
q

c
d


 

  

    

 

 

 

( )

0

( )

1 ( ) ( )

( ,| |) ( ,| |) | |

     | .|

( ) p x

q x

p x p x

m x u x u dx u dx
p

u dx c g u
q

c


 

 

    

 

 

 ‖ ‖ ‖ ‖

Hence, for   sufficiently small, it 

follows that 

𝐽(𝑢) ≥
𝑚0

2
∫ (Φ(𝑥, |𝛻𝑢|) + Φ(𝑥, |𝑢|))𝑑𝑥 −

𝛺

      
𝐶𝜀

𝑞− ∫ |𝑢|𝑞(𝑥)𝑑𝑥 −
𝛺

𝑐1‖𝑔‖𝑝′(𝑥)‖𝑢‖𝑝(𝑥).                                           (21)

       By relation (11) and Remark 2.3 with 
( )

( , )
p x

x t t  , we deduce that the space X 

is continuously embedded in 1, ( ) ( )p xW  . 

On the other hand, Proposition 2.5 

ensures that 1, ( ) ( )p xW   is compactly 

embedded in ( ) ( )q xL  . Thus, 𝑋 ↪ 𝐿𝑞(𝑥)(Ω) 

is compact. Then, there exist a positive 

constant c2 such that 

         ‖𝑢‖𝑞(𝑥) ≤ 𝑐2‖𝑢‖,    for all 𝑢 ∈ 𝑋.   (22) 

Then, by Propositions 2.2 and 2.4 the 

following hold 

𝐽(𝑢) ≥ 𝑚0 𝑚𝑎𝑥{‖𝑢‖𝛼 , ‖𝑢‖𝛽}

− 𝑐𝜀 𝑚𝑎𝑥{‖𝑢‖𝑞−
, ‖𝑢‖𝑞+

}

− 𝑐4‖𝑔‖𝑝′(𝑥)‖𝑢‖ → +∞, 

as ‖𝑢‖ → +∞ since 𝑞+ < 𝛼. By Lemma 2.6 

(i), it is easy to verify that J is weakly 

lower semicontiguous. So J has a 

minimum point (see [22, Theorem 1.2]), 

which is a weak solution of problem (1). 

Using the mountain pass theorem and 

Ekeland’s variational principle, we obtain 

the second main result. 

Theorem 3.2. Assume that (m1), 

(m2), (f1) - (f4) hold and suppose that 𝛽 <

𝑞− and 𝑔 ∈ 𝐿𝑝′(𝑥)(𝛺), 𝑔 ≢ 0. Then there 

exists a constant 𝛾 > 0 such that problem 

(1) admits at least two nontrivial different 

solutions 𝑢, 𝑢 ∈ 𝑋 satisfying 𝐽(𝑢) < 0 < 𝐽(𝑢) 

provided that ‖𝑔‖𝑝′(𝑥) < 𝛾. 

We first prove the following auxiliary 

lemmas which will be used in the proof 

of Theorem 3.2. 

Lemma 3.3. Under the conditions 

(m1), (f1) and (f2), there exist , ,a   𝜚 > 0 

such that 𝐽(𝑢) ≥ 𝑎 for any 𝑢 ∈ 𝑋, u = 𝜚 

and for all 𝑔 ∈ 𝐿𝑝′(𝑥)(𝛺) with ‖𝑔‖𝑝′(𝑥) ≤ 𝛾.  

Proof. From relation (23), the following 

hold 
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Since q  (we also have q  ), there 

exists 𝜚 > 0 such that  

max ( )
t

h t


= ℎ(𝜚) > 0, 

where   

ℎ(𝑡) ≔ 𝑚0𝑡𝛽−1 − 𝑐3𝑡𝑞−−1. 

Then, taking  𝛾 = ℎ(𝜚)/2𝑐4  we obtain that 

𝐽(𝑢) ≥ 𝑎 = 𝜚ℎ(𝜚) for ‖𝑢‖ = 𝜚 and for  all 

𝑔 ∈ 𝐿𝑝′(𝑥)(Ω) with ‖𝑔‖𝑝′(𝑥) ≤ 𝛾. 

Lemma 3.4. Assume that conditions (m2) 

and (f3) hold. Then, there exists a 

nonnegative function e X  with ‖𝑒‖ >

𝜚 such that 𝐽(𝑒) < 0, where is given in 

Lemma 3.3. 

Proof. Let  

( ) ( , ) ( , ), 1.k F x t F x t t      

We have  
' 1( ) ( ( , ) ( , )) 0k t t f x t t F x t        

for all 1   by 
3( )f . Hence, ( ) (1)k k   

for all 1  , that is,  

𝐹(𝑥, 𝜏𝑡) ≥ 𝜏𝜃𝐹(𝑥, 𝑡)                     (24) 

for all(𝑥, 𝑡) ∈ 𝛺 × ℝ and 𝜏 ≥ 1.        

Now, we show that 

Φ(𝑥, 𝜏𝑡) ≤ 𝜏𝛽Φ(𝑥, 𝑡),                   (25) 

for all 𝑥 ∈ 𝛺, 𝑡 > 0 and 𝜏 > 1. 

(23) 



Indeed, from (4) for 𝜏 > 1 be fixed, we 

have 

𝑙𝑛(Φ(𝑥, 𝜏𝑡)) − 𝑙𝑛(Φ(𝑥, 𝑡))  

 = ∫
𝜑(𝑥, 𝑠)

Φ(𝑥, 𝑠)
𝑑𝑠 ≤ ∫

𝛽

𝑠
𝑑𝑠,

𝜏𝑡

𝑡

𝜏𝑡

0

  

and it follows that relation (25) holds true. 

By the same way, integrating (m2) we 

obtain 

�̂�(𝑡) ≤
�̂�(𝑡0)

𝑡0

1
𝜎

= 𝑐6𝑡1/𝜎, for all 𝑡 ≥ 𝑡0 > 0. (26) 

Now, let a function 𝜓 ∈ 𝐶0
∞(Ω), 𝜓 ≥ 0, 

≢ 0 and 𝐹(𝑥, 𝜓) > 0. For 𝑢 ∈ 𝑋\{0} and 

1  , in view of relations (24), (25) and 

(26), we obtain 

𝐽(𝜏𝜓) = �̂� (∫ (Φ(𝑥, 𝜏|∇𝜓|)
Ω

+ Φ(𝑥, 𝜏|𝜓|))) 𝑑𝑥 

− ∫ 𝐹(𝑥, 𝜏𝜓)𝑑𝑥 −
Ω

∫ 𝑔(𝑥)𝜏𝜓𝑑𝑥
Ω

 

≤ 𝑐6 (∫ (Φ(𝑥, 𝜏|∇𝜓|) + Φ(𝑥, 𝜏|𝜓|))𝑑𝑥
𝛺

)

1/𝜎

 

           −𝜏𝜃 ∫ 𝐹(𝑥, 𝜓)𝑑𝑥 −
Ω

𝜏 ∫ 𝑔(𝑥)𝜓𝑑𝑥
Ω

  

    ≤ 𝑐6𝜏𝛽/𝜎(∫ (Φ(x, |∇𝜓|) + Φ(𝑥, |𝜓|)
Ω

))
1/𝜎

   

           −𝜏𝜃 ∫ 𝐹(𝑥, 𝜓)𝑑𝑥 −
Ω

𝜏 ∫ 𝑔(𝑥)𝜓𝑑𝑥     (27)
Ω

    

since  1 < 𝛽 < 𝛽/𝜎 < 𝑞− < 𝜃, we deduce 

that 𝐽 (𝜏 ) → −∞  as 𝜏 → +∞. So Lemma 

3.4 is proved by choosing 𝑒 = 𝜏∗  with 

𝜏∗ > 0 large enough such that ‖𝑒‖ > 𝜚. 

Definition 3.5. We say that J 

satisfises the Palais-Smale condition at 

level 𝑐 ∈ ℝ (briefly (PS)c ) on X, if any 

sequence 𝐽{𝑢𝑛} ⊂ 𝑋, such that 𝐽(𝑢𝑛) → 𝑐 

and 𝐽′(𝑢𝑛) → 0 as  𝑛 → ∞, possesses a 

convergent subsequence. 

Lemma 3.6. Assume that 

conditions (m1), (m2) and (𝑓1) − (𝑓3) hold. 

Then the functional J satisfies the ( )cPS  

condition with 𝑐 ≠ 0. 

Proof. Consider a sequence {𝑢𝑛} ⊂ 𝑋 

which satisfies 

    𝐽(𝑢𝑛) → 𝑐 > 0, 𝐽′(𝑢𝑛) → 0 as 𝑛 → ∞.   (28) 

Let us show that {𝑢𝑛} is bounded in X. 

Assume ‖𝑢‖ > 1 for convenience, 

according to (𝑚1), (𝑚2), (𝑓3), (4) and 

Proposition 2.2, for 𝑛 large enough, we 

have 

1 + 𝑐7 + ‖𝑢𝑛‖ ≥ 𝐽(𝑢𝑛) −
1

𝜃
⟨𝐽′(𝑢𝑛), 𝑢𝑛⟩ 

≥ 𝜎𝑀 (∫ (Φ(𝑥, |𝛻𝑢𝑛|)
𝛺

+ Φ(𝑥, |𝑢𝑛|)) 𝑑𝑥) ∫ (Φ(𝑥, |𝛻𝑢𝑛|)
Ω

+ Φ(𝑥, |𝑢𝑛|)) 𝑑𝑥 

−
1

𝜃
𝑀 (∫ (Φ(𝑥, |𝛻𝑢𝑛|)

Ω

+ Φ(𝑥, |𝑢𝑛|)) 𝑑𝑥) ∫ (𝑎(𝑥, |𝛻𝑢𝑛|)|𝛻𝑢𝑛|2

Ω

+ 𝑎(|𝑢𝑛|)𝑢𝑛
2)𝑑𝑥 

− ∫ 𝐹(𝑥, 𝑢𝑛)𝑑𝑥
Ω

+
1

𝜃
∫ 𝑓(𝑥, 𝑢𝑛)𝑢𝑛𝑑x - 

𝜃 − 1

𝜃
∫ 𝑔(𝑥)𝑢𝑛𝑑𝑥

ΩΩ

 

≥ 𝜎𝑀 (∫ (Φ(𝑥, |𝛻𝑢𝑛|)
Ω

+ Φ(𝑥, |𝑢𝑛|))𝑑𝑥) ∫ (Φ(𝑥, |𝛻𝑢𝑛|)
Ω

+ Φ(𝑥, |𝑢𝑛|))𝑑𝑥 

−
1

𝜃
𝑀 (∫ (Φ(𝑥, |𝛻𝑢𝑛|)

Ω

+ Φ(𝑥, |𝑢𝑛|))𝑑𝑥) ∫ (𝜑(𝑥, |𝛻𝑢𝑛|)|𝛻𝑢𝑛|
Ω

+ 𝜑(𝑥, |𝑢𝑛|)𝑢𝑛)𝑑𝑥 −
𝑐4(𝜃 − 1)

𝜃
‖𝑔‖𝑝′(𝑥)‖𝑢𝑛‖ 

≥ 𝜎𝑀 (∫ (Φ(𝑥, |𝛻𝑢𝑛|)
Ω

+ Φ(𝑥, |𝑢𝑛|))𝑑𝑥) ∫ (Φ(𝑥, |𝛻𝑢𝑛|)
Ω

+ Φ(𝑥, |𝑢𝑛|))𝑑𝑥 

−
𝛽

𝜃
𝑀 (∫ (Φ(𝑥, |𝛻𝑢𝑛|)

Ω

+ Φ(|𝑢𝑛|))𝑑𝑥) ∫ (Φ(𝑥, |𝛻𝑢𝑛|)
Ω

+ Φ(𝑥, |𝑢𝑛|))𝑑x-c8‖𝑢𝑛‖ 

≥ 𝑚0(𝜎 − 𝛽/𝜃)‖𝑢𝑛‖𝛼 − 𝑐8‖𝑢𝑛‖. 

Taking into account / /q     , we 

conclude that { }nu  is bounded. For a 

subsequence we can assume that 𝑢𝑛 ⇀ �̅� 

in X. Then ⟨𝐽′(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ → 0, that is 



𝑀(𝐿(𝑢𝑛)) ∫ (𝑎(𝑥, |𝛻𝑢𝑛|)𝛻𝑢𝑛𝛻(𝑢𝑛 − 𝑢)
Ω

+ 𝑎(𝑥, |𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢)𝑑𝑥 

                           − ∫ 𝑓(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢)𝑑𝑥
Ω

− ∫ 𝑔(𝑥)(𝑢𝑛 − 𝑢)𝑑𝑥 → 0.
Ω

 

From (𝑓1) and (𝑓2), using again Holder’s 

inequality, it follows that  

∫ 𝑓(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢)𝑑𝑥 → 0
Ω

 

and 

∫ 𝑔(𝑥)(𝑢𝑛 − 𝑢)𝑑𝑥 → 0.
Ω

 

Therefore, one has 

𝑀(𝐿(𝑢𝑛)) ∫ (𝑎(𝑥, |𝛻𝑢𝑛|)𝛻𝑢𝑛𝛻(𝑢𝑛 − 𝑢)
Ω

 

+𝑎(𝑥, |𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢))𝑑𝑥 → 0. 

From Lemma 2.6 (iii), 𝐼′ is of type (𝑆+), 

then 𝑢𝑛 → 𝑢 strongly. 

Proof of Theorem 3.2. The proof 

is divided into two steps: 

Step 1: From Lemmas 3.3 and 3.4, by 

mountain pass theorem due to Ambrosetti 

and Rabinowitz [2], there exists a 

sequence {𝑢𝑛} ⊂ 𝑋 such that 

𝐽(𝑢𝑛) → 𝑐 > 0,   𝐽′(𝑢𝑛) → 0 as 𝑛 → ∞.  (29) 

By Lemma 3.6, that there exists 𝑢 ∈ 𝑋 

such that 𝐽(𝑢) = 𝑐 > 0, 𝐽′(𝑢) = 0,  i.e.,  𝑢 is a 

nontrivial weak solution of problem (1). 

Step 2: For each (𝑥, 𝑡) ∈ Ω × ℝ, set ℎ(𝜏) =

𝐹(𝑥, 𝜏−1𝑡)𝜏𝜃 , 𝜏 ∈ [1, +∞). By condition (𝑓3), 
ℎ′(𝜏) = 𝜏𝜃−1[𝜃𝐹(𝑥, 𝜏−1𝑡) − 𝜏−1𝑡𝑓(𝑧, 𝜏−1𝑡)] ≤ 0, 

so ( )h   is nonincreasing. Thus, for any 

|𝑡| ≥ 1 we have ℎ(1) ≥ ℎ(|𝑡|), that is, 

𝐹(𝑥, 𝑡) ≥ 𝐹(𝑥, |𝑡|−1𝑡)|𝑡|𝜃 ≥ 𝑎9|𝑡|𝜃 , 

where 𝑎9 = 𝑖𝑛𝑓{𝑥∈𝛺,|𝑡|=1} 𝐹 (𝑥, 𝑡) > 0 by (𝑓4). 

From (𝑓1), there exists 𝛿 > 0 such that  
|𝑓(𝑥, 𝑡)𝑡|

|𝑡|𝑝(𝑥)
≤

|𝑓(𝑥, 𝑡)|

|𝑡|𝑝(𝑥)−1
≤ 1 

for all 𝑥 ∈ Ω and 0 < |𝑡| ≤ 𝛿. By condition 

(𝑓2), for all 𝑥 ∈ Ω and 𝛿 ≤ |𝑡| ≤ 1, there 

exists 𝑐10 > 0 such that 
|𝑓(𝑥,𝑡)𝑡|

|𝑡|𝑞(𝑥) ≤ 𝑐10 . 

Hence, for all x  and 0 ≤ |𝑡| ≤ 1, we 

have 
( ) ( )

10( , ) .
p x q x

f x t t t c t    

Using the equality 𝐹(𝑥, 𝑡) = ∫ 𝑓(𝑥, 𝜏𝑡)𝑑𝜏,
1

0
 it 

follows that 

( ) ( )101
( , )

( ) ( )

p x q xc
F x t t t

p x q x
  

 
for all 𝑥 ∈ 𝛺 and all 0 ≤ |𝑡| ≤ 1. Therefore, 

we deduce that 

𝐹(𝑥, 𝑡) ≥ 𝑐9|𝑡|𝜃 −
1

𝑝(𝑥)
|𝑡|𝑝(𝑥) −

𝑐10

𝑞(𝑥)
|𝑡|𝑞(𝑥) 

for all x  and 𝑡 ∈ ℝ. 

From the fact that 𝑔 ∈ 𝐿𝑝′(𝑥)(𝛺) and 𝑔 ≢ 0, 

we can choose a function 𝜑 ∈ 𝑋 such that  

∫ 𝑔(𝑥)𝜑(𝑥)𝑑𝑥 > 0.
𝛺

 

Then, arising as (27) we obtain 

𝐽(𝜏𝜑) = �̂� (∫ (Φ(𝑥, 𝜏|∇𝜓|) + Φ(𝑥, 𝜏|𝜓|)
Ω

) 𝑑𝑥 

      − ∫ 𝐹(𝑥, 𝜏𝜓)𝑑𝑥 − ∫ 𝑔(𝑥)𝜏𝜓𝑑𝑥
ΩΩ

 

≤ 𝑐6𝜏𝛽/𝜎 (∫ (Φ(𝑥, |∇𝜑|) + Φ(𝑥, |𝜑|))𝑑𝑥
Ω

)

1/𝜎

 

      − 𝑐9𝜏𝜃 ∫ |𝜑|𝜃𝑑𝑥
Ω

 

      + 𝑐11𝜏𝑝−
∫ |𝜑|𝑝(𝑥)𝑑𝑥 + 𝑐12𝜏𝑞−

∫ |𝜑|𝑝(𝑥)𝑑𝑥
Ω𝛺

 

          −𝜏 ∫ 𝑔(𝑥)𝜑𝑑𝑥 < 0
Ω

,  

for 𝜏 > 0 small enough since 𝑞− > 𝛽/𝜎 and 

𝜃 > max{𝑝−, 𝑞−} > 1. Thus, we obtain  

−∞ < 𝑐 ≔ 𝑖𝑛𝑓𝐵𝜚(0)𝐽 < 0, 

where 𝜚 is given by Lemma 3.3 and 

𝐵𝜚(0) ⊂ 𝑋 denote the ball centered at the 

origin and of radius 𝜚. 

Now, let us choose 휀 > 0 such that 

               휀 < inf
𝜕𝐵𝜚(0)

𝐽 − inf
 𝐵𝜚(0)

𝐽.                     (30) 

Applying Ekeland’s variational principle 

to the functional 𝐽: 𝐵𝜚(0) → ℝ, if follows 

that there exists 𝑢ℇ ∈ 𝐵𝜚(0)  𝑠uch that 

{
𝐼(𝑢𝜀) < 𝑖𝑛𝑓𝐵𝜚(0)𝐽(𝑢) + 휀

𝐽(𝑢𝜀) < 𝐽(𝑢) + 휀‖𝑢 − 𝑢𝜀‖, ∀𝑢 ∈ 𝐵𝜚(0)\{𝑢𝜀}
(31) 

By (30) and the fact that  



𝐽(𝑢𝜀) < 𝑖𝑛𝑓𝐵𝜚(0)𝐽(𝑢) + 휀 

                               < inf
 𝐵𝜚(0)

𝐽(𝑢) + 휀 < inf
 𝐵𝜚(0)

𝐽(𝑢), 

it follows that 𝑢𝜀 ∈ 𝐵𝜚(0). From these 

facts, we have that 𝑢𝜖 is a local minimum 

of the functional 𝐾(𝑢) = 𝐽(𝑢) +

휀‖𝑢 − 𝑢𝑛‖ defined from 𝐵𝜚(0) onto ℝ. 

Therefore, for 𝑣 ∈ 𝐵1(0) and sufficiently 

small 𝑡 > 0, we have  

0 ≤
𝐾(𝑢𝜀 + 𝑡𝑣) − 𝐾(𝑢𝜀)

𝑡
 

=
𝐽(𝑢𝜀 + 𝑡𝑣) − 𝐽(𝑢𝜀)

𝑡
+ 휀‖𝑣‖. 

Letting 𝑡 → 0+ it following that 
〈𝐽′(𝑢𝜀), 𝑣〉 + 휀‖𝑣‖ ≥ 0, 

we infer that 

‖𝐽′(𝑢𝜀)‖ ≤ 휀.                                (32) 

From relations (31) and (32), there exists 

a sequence {𝑢𝑛} ⊂ 𝐵𝜚(0) such that 

𝐽(𝑢𝑛) → 𝑐,    𝐽′(𝑢𝑛) → 0.               (33) 

In view of Lemma 3.6, {𝑢𝑛} is a bounded 

sequence in 𝑋. Thus, there exists 𝑢 ∈ 𝑋 

such that, up to a subsequence, {𝑢𝑛}  

converges strongly to 𝑢 and 𝐽(𝑢) = 𝑐 <

0,   𝐽′(𝑢) = 0, i.e., 𝑢 is also a nontrivial 

weak solution for problem (1) such that 

𝑢 ≠ 𝑢. The proof of Theorem 3.2 is now 

complete. 
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SỰ TỒN TẠI NGHIỆM CHO MỘT LỚP PHƯƠNG TRÌNH KHÔNG 

THUẦN NHẤT VÀ KHÔNG ĐỊA PHƯƠNG TRONG KHÔNG GIAN 

ORLICZ-SOBOLEV 
 

Tóm tắt. Trong bài báo này, chúng tôi nghiên cứu sự tồn tại đa nghiệm cho một lớp bài 

toán không thuần nhất và không địa phương trong không gian Orlicz-Sobolev. Các kết quả của 

chúng tôi ở đây được thiết lập bằng cách dùng định lí qua núi kết hợp với nguyên lí biến phân 

Ekeland. 
 

Từ khóa: Toán tử không thuần nhất; Không gian Orlicz-Sobolev; Bài toán 

kiểu Kirchhoff type; Phương pháp biến phân. 
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