

SERIES

Infinite series are sums of infinitely many terms. (One of our aims in this chapter is to define exactly what is meant by an infinite sum.) Their importance in calculus stems from Newton's idea of representing functions as sums of infinite series. For instance, in finding areas he often integrated a function by first expressing it as a series and then integrating each term of the series. We will pursue his idea in Section 8.7 in order to integrate such functions as e^{-x^2} . (Recall that we have previously been unable to do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel functions, are defined as sums of series, so it is important to be familiar with the basic concepts of convergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 8.8. In studying fields as diverse as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with the first few terms in the series that represents it.

8.1

SEQUENCES

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term a_n will have a successor a_{n+1} .

Notice that for every positive integer *n* there is a corresponding number a_n and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_n instead of the function notation f(n) for the value of the function at the number *n*.

NOTATION The sequence $\{a_1, a_2, a_3, \ldots\}$ is also denoted by

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

EXAMPLE 1 Some sequences can be defined by giving a formula for the *n*th term. In the following examples we give three descriptions of the sequence: one by using the preceding notation, another by using the defining formula, and a third by writing out the terms of the sequence. Notice that n doesn't have to start at 1.

425

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$
(b) $\left\{\frac{(-1)^n(n+1)}{3^n}\right\}$ $a_n = \frac{(-1)^n(n+1)}{3^n}$ $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\right\}$
(c) $\left\{\sqrt{n-3}\right\}_{n=3}^{\infty}$ $a_n = \sqrt{n-3}, n \ge 3$ $\left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}$
(d) $\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$ $a_n = \cos\frac{n\pi}{6}, n \ge 0$ $\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\frac{n\pi}{6}, \dots\right\}$

Unless otherwise noted, all content on this page is C Cengage Learning.

V EXAMPLE 2 Find a formula for the general term a_n of the sequence

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \ldots\right\}$$

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

$$a_1 = \frac{3}{5}$$
 $a_2 = -\frac{4}{25}$ $a_3 = \frac{5}{125}$ $a_4 = -\frac{6}{625}$ $a_5 = \frac{7}{3125}$

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we go to the next term. The second term has numerator 4, the third term has numerator 5; in general, the *n*th term will have numerator n + 2. The denominators are the powers of 5, so a_n has denominator 5^n . The signs of the terms are alternately positive and negative, so we need to multiply by a power of -1. In Example 1(b) the factor $(-1)^n$ meant we started with a negative term. Here we want to start with a positive term and so we use $(-1)^{n-1}$ or $(-1)^{n+1}$. Therefore

$$a_n = (-1)^{n-1} \frac{n+2}{5^n}$$

EXAMPLE 3 Here are some sequences that don't have a simple defining equation. (a) The sequence $\{p_n\}$, where p_n is the population of the world as of January 1 in the year *n*.

(b) If we let a_n be the digit in the *n*th decimal place of the number *e*, then $\{a_n\}$ is a well-defined sequence whose first few terms are

$$\{7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, \ldots\}$$

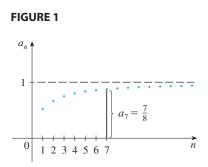
(c) The **Fibonacci sequence** $\{f_n\}$ is defined recursively by the conditions

 $f_1 = 1$ $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}$ $n \ge 3$

Each term is the sum of the two preceding terms. The first few terms are

$$\{1, 1, 2, 3, 5, 8, 13, 21, \ldots\}$$

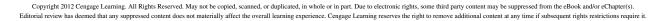
This sequence arose when the 13th-century Italian mathematician known as Fibonacci solved a problem concerning the breeding of rabbits (see Exercise 45).


A sequence such as the one in Example 1(a), $a_n = n/(n + 1)$, can be pictured either by plotting its terms on a number line as in Figure 1 or by plotting its graph as in Figure 2. Note that, since a sequence is a function whose domain is the set of positive integers, its graph consists of isolated points with coordinates

 $(1, a_1)$ $(2, a_2)$ $(3, a_3)$... (n, a_n) ...

From Figure 1 or 2 it appears that the terms of the sequence $a_n = n/(n + 1)$ are approaching 1 as *n* becomes large. In fact, the difference

$$1 - \frac{n}{n+1} = \frac{1}{n+1}$$


Unless otherwise noted, all content on this page is © Cengage Learning.

 $a_1 \quad a_2 a_3 \downarrow^{a_4}$

FIGURE 2

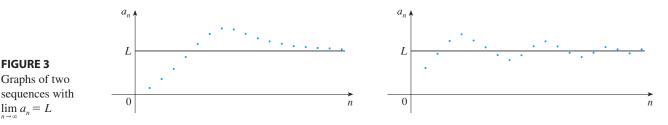
0

can be made as small as we like by taking n sufficiently large. We indicate this by writing

$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$

In general, the notation

$$\lim_{n\to\infty}a_n=L$$


means that the terms of the sequence $\{a_n\}$ approach *L* as *n* becomes large. Notice that the following definition of the limit of a sequence is very similar to the definition of a limit of a function at infinity given in Section 1.6.

1 DEFINITION A sequence $\{a_n\}$ has the **limit** *L* and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

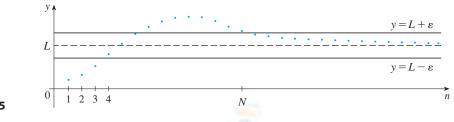
Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the limit L.

A more precise version of Definition 1 is as follows.

2 DEFINITION A sequence $\{a_n\}$ has the **limit** *L* and we write

$$\lim a_n = L \qquad \text{or} \qquad a_n \to L \text{ as } n \to \infty$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that


if n > N then $|a_n - L| < \varepsilon$

Definition 2 is illustrated by Figure 4, in which the terms a_1, a_2, a_3, \ldots are plotted on a number line. No matter how small an interval $(L - \varepsilon, L + \varepsilon)$ is chosen, there exists an N such that all terms of the sequence from a_{N+1} onward must lie in that interval.

• Compare this definition with Definition 1.6.7.

Unless otherwise noted, all content on this page is C Cengage Learning.

Another illustration of Definition 2 is given in Figure 5. The points on the graph of $\{a_n\}$ must lie between the horizontal lines $y = L + \varepsilon$ and $y = L - \varepsilon$ if n > N. This picture must be valid no matter how small ε is chosen, but usually a smaller ε requires a larger N.

If you compare Definition 2 with Definition 1.6.7, you will see that the only difference between $\lim_{n\to\infty} a_n = L$ and $\lim_{x\to\infty} f(x) = L$ is that *n* is required to be an integer. Thus we have the following theorem, which is illustrated by Figure 6.

3 THEOREM If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when *n* is an integer, then $\lim_{n\to\infty} a_n = L$.

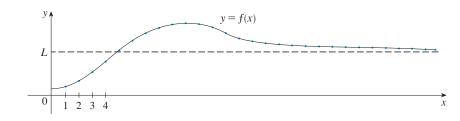


FIGURE 6

In particular, since we know that $\lim_{x\to\infty} (1/x^r) = 0$ when r > 0, we have

4
$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \quad \text{if } r > 0$$

If a_n becomes large as *n* becomes large, we use the notation $\lim_{n\to\infty} a_n = \infty$. The following precise definition is similar to Definition 1.6.8.

5 DEFINITION $\lim_{n\to\infty} a_n = \infty$ means that for every positive number *M* there is a positive integer *N* such that

if n > N then $a_n > M$

If $\lim_{n\to\infty} a_n = \infty$, then the sequence $\{a_n\}$ is divergent but in a special way. We say that $\{a_n\}$ diverges to ∞ .

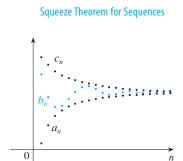
The Limit Laws given in Section 1.4 also hold for the limits of sequences and their proofs are similar.

Limit Laws for Sequences

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and *c* is a constant, then

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$


$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n \qquad \lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \quad \text{if } \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} a_n^p = [\lim_{n \to \infty} a_n]^p \quad \text{if } p > 0 \text{ and } a_n > 0$$

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

The sequence $\{b_n\}$ is squeezed between the sequences $\{a_n\}$

FIGURE 7

and $\{c_n\}$.

If $a_n \le b_n \le c_n$ for $n \ge n_0$ and $\lim a_n = \lim c_n = L$, then $\lim b_n = L$.

Another useful fact about limits of sequences is given by the following theorem, whose proof is left as Exercise 49.

6 THEOREM If
$$\lim_{n \to \infty} |a_n| = 0$$
, then $\lim_{n \to \infty} a_n = 0$.

EXAMPLE 4 Find $\lim_{n \to \infty} \frac{n}{n+1}$.

SOLUTION The method is similar to the one we used in Section 1.6: Divide numerator and denominator by the highest power of *n* that occurs in the denominator and then use the Limit Laws.

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$
$$= \frac{1}{1+0} = 1$$

• This shows that the guess we made earlier from Figures 1 and 2 was correct.

Here we used Equation 4 with r = 1.

Unless otherwise noted, all content on this page is © Cengage Learning.

• www.stewartcalculus.com See Additional Example A. **EXAMPLE 5** Calculate $\lim_{n \to \infty} \frac{\ln n}{n}$.

SOLUTION Notice that both numerator and denominator approach infinity as $n \rightarrow \infty$. We can't apply l'Hospital's Rule directly because it applies not to sequences but to functions of a real variable. However, we can apply l'Hospital's Rule to the related function $f(x) = (\ln x)/x$ and obtain

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$$

Therefore, by Theorem 3, we have

$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$

EXAMPLE 6 Determine whether the sequence $a_n = (-1)^n$ is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

$$\{-1, 1, -1, 1, -1, 1, -1, \ldots\}$$

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and -1 infinitely often, a_n does not approach any number. Thus $\lim_{n\to\infty} (-1)^n$ does not exist; that is, the sequence $\{(-1)^n\}$ is divergent.

 $\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0$

EXAMPLE 7 Evaluate
$$\lim_{n \to \infty} \frac{(-1)^n}{n}$$
 if it exists.

SOLUTION

 $a_n \wedge 1$

FIGURE 9

FIGURE 8

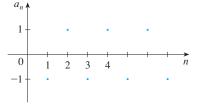
LUTION

Therefore, by Theorem 6,

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

The following theorem says that if we apply a continuous function to the terms of a convergent sequence, the result is also convergent. The proof is left as Exercise 50.

CONTINUITY AND CONVERGENCE THEOREM If $\lim_{n \to \infty} a_n = L$ and the function *f* is continuous at *L*, then


$$\lim_{n\to\infty} f(a_n) = f(L)$$

EXAMPLE 8 Find lim $\sin(\pi/n)$.

SOLUTION Because the sine function is continuous at 0, the Continuity and Convergence Theorem enables us to write

$$\lim_{n \to \infty} \sin(\pi/n) = \sin\left(\lim_{n \to \infty} (\pi/n)\right) = \sin 0 = 0$$

Unless otherwise noted, all content on this page is © Cengage Learning.

• The graph of the sequence in

supports the answer.

Example 7 is shown in Figure 9 and

V EXAMPLE 9 Discuss the convergence of the sequence $a_n = n!/n^n$, where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

SOLUTION Both numerator and denominator approach infinity as $n \to \infty$ but here we have no corresponding function for use with l'Hospital's Rule (*x*! is not defined when *x* is not an integer). Let's write out a few terms to get a feeling for what happens to a_n as *n* gets large:

 $a_1 = 1 \qquad a_2 = \frac{1 \cdot 2}{2 \cdot 2} \qquad a_3 = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$ $a_n = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n}$

It appears from these expressions and the graph in Figure 10 that the terms are decreasing and perhaps approach 0. To confirm this, observe from Equation 7 that

$$a_n = \frac{1}{n} \left(\frac{2 \cdot 3 \cdot \cdots \cdot n}{n \cdot n \cdot \cdots \cdot n} \right)$$

Notice that the expression in parentheses is at most 1 because the numerator is less than (or equal to) the denominator. So

$$0 < a_n \leq \frac{1}{n}$$

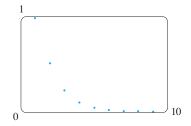
We know that $1/n \to 0$ as $n \to \infty$. Therefore $a_n \to 0$ as $n \to \infty$ by the Squeeze Theorem.

V EXAMPLE 10 For what values of *r* is the sequence $\{r^n\}$ convergent?

SOLUTION We know from Section 1.6 and the graphs of the exponential functions in Section 3.1 that $\lim_{x\to\infty} a^x = \infty$ for a > 1 and $\lim_{x\to\infty} a^x = 0$ for 0 < a < 1. Therefore, putting a = r and using Theorem 3, we have

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if } r > 1\\ 0 & \text{if } 0 < r < 1 \end{cases}$$

For the cases r = 1 and r = 0 we have


 $\lim_{n \to \infty} 1^n = \lim_{n \to \infty} 1 = 1 \quad \text{and} \quad \lim_{n \to \infty} 0^n = \lim_{n \to \infty} 0 = 0$

If -1 < r < 0, then 0 < |r| < 1, so

$$\lim_{n\to\infty}|r^n|=\lim_{n\to\infty}|r|^n=0$$

and therefore $\lim_{n\to\infty} r^n = 0$ by Theorem 6. If $r \leq -1$, then $\{r^n\}$ diverges as in

Unless otherwise noted, all content on this page is © Cengage Learning.

 CREATING GRAPHS OF SEQUENCES
 Some computer algebra systems have special commands that enable us to create

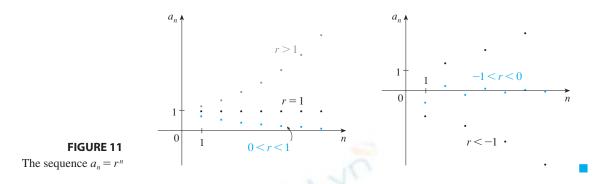
sequences and graph them directly. With

sequence in Example 9 can be graphed by entering the parametric equations

and graphing in dot mode starting with

t = 1, setting the *t*-step equal to 1. The

 $v = t!/t^t$


x = t

result is shown in Figure 10.

most graphing calculators, however, sequences can be graphed by using parametric equations. For instance, the 7

Example 6. Figure 11 shows the graphs for various values of *r*. (The case r = -1 is shown in Figure 8.)

The results of Example 10 are summarized for future use as follows.

8 The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^{n} = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}$$

9 DEFINITION A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

EXAMPLE 11 The sequence $\left\{\frac{3}{n+5}\right\}$ is decreasing because

$$\frac{3}{n+5} > \frac{3}{(n+1)+5} = \frac{3}{n+6}$$

has a larger denominator.

• The right side is smaller because it

and so $a_n > a_{n+1}$ for all $n \ge 1$.

EXAMPLE 12 Show that the sequence
$$a_n = \frac{n}{n^2 + 1}$$
 is decreasing.

SOLUTION We must show that $a_{n+1} < a_n$, that is,

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1}$$

• Another way to do Example 12 is to show that the function

$$f(x) = \frac{x}{x^2 + 1} \qquad x \ge 1$$

is decreasing because f'(x) < 0 for x > 1.

This inequality is equivalent to the one we get by cross-multiplication:

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1} \iff (n+1)(n^2+1) < n[(n+1)^2+1]$$
$$\iff n^3 + n^2 + n + 1 < n^3 + 2n^2 + 2n$$
$$\iff 1 \le n^2 + n$$

Since $n \ge 1$, we know that the inequality $n^2 + n > 1$ is true. Therefore $a_{n+1} < a_n$ and so $\{a_n\}$ is decreasing.

10 DEFINITION A sequence $\{a_n\}$ is **bounded above** if there is a number *M* such that

 $a_n \leq M$ for all $n \geq 1$

It is **bounded below** if there is a number *m* such that

 $m \le a_n$ for all $n \ge 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

For instance, the sequence $a_n = n$ is bounded below $(a_n > 0)$ but not above. The sequence $a_n = n/(n + 1)$ is bounded because $0 < a_n < 1$ for all n.

We know that not every bounded sequence is convergent [for instance, the sequence $a_n = (-1)^n$ satisfies $-1 \le a_n \le 1$ but is divergent from Example 6] and not every monotonic sequence is convergent $(a_n = n \rightarrow \infty)$. But if a sequence is both bounded *and* monotonic, then it must be convergent. This fact is proved as Theorem 11, but intuitively you can understand why it is true by looking at Figure 12. If $\{a_n\}$ is increasing and $a_n \le M$ for all n, then the terms are forced to crowd together and approach some number L.

The proof of Theorem 11 is based on the **Completeness Axiom** for the set \mathbb{R} of real numbers, which says that if *S* is a nonempty set of real numbers that has an upper bound *M* ($x \le M$ for all *x* in *S*), then *S* has a **least upper bound** *b*. (This means that *b* is an upper bound for *S*, but if *M* is any other upper bound, then $b \le M$.) The Completeness Axiom is an expression of the fact that there is no gap or hole in the real number line.

11 MONOTONIC SEQUENCE THEOREM Every bounded, monotonic sequence is convergent.

PROOF Suppose $\{a_n\}$ is an increasing sequence. Since $\{a_n\}$ is bounded, the set $S = \{a_n | n \ge 1\}$ has an upper bound. By the Completeness Axiom it has a least upper bound *L*. Given $\varepsilon > 0$, $L - \varepsilon$ is *not* an upper bound for *S* (since *L* is the *least* upper bound). Therefore

$$a_N > L - \varepsilon$$
 for some integer N

But the sequence is increasing so $a_n \ge a_N$ for every n > N. Thus if n > N we have

$$a_n > L - \varepsilon$$
$$0 \le L - a \le \varepsilon$$

 $\begin{array}{c}
a_n \\
M \\
\hline
L \\
\vdots \\
0 \\
123 \\
n
\end{array}$

Unless otherwise noted, all content on this page is © Cengage Learning

SO

since $a_n \leq L$. Thus

$$|L - a_n| < \varepsilon$$
 whenever $n > N$

so $\lim_{n\to\infty} a_n = L$.

A similar proof (using the greatest lower bound) works if $\{a_n\}$ is decreasing.

www.stewartcalculus.com
 See Additional Example B.

The proof of Theorem 11 shows that a sequence that is increasing and bounded above is convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) This fact is used many times in dealing with infinite series in Sections 8.2 and 8.3.

Another use of Theorem 11 is indicated in Exercises 42–44.

B.1 EXERCISES

- **1.** (a) What is a sequence?
 - (b) What does it mean to say that lim_{n→∞} a_n = 8?
 (c) What does it mean to say that lim_{n→∞} a_n = ∞?
- 2. (a) What is a convergent sequence? Give two examples.(b) What is a divergent sequence? Give two examples.
- 3. List the first six terms of the sequence defined by

$$a_n = \frac{n}{2n+1}$$

Does the sequence appear to have a limit? If so, find it.

4. List the first nine terms of the sequence $\{\cos(n\pi/3)\}$. Does this sequence appear to have a limit? If so, find it. If not, explain why.

5–8 Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

5. $\left\{-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, \ldots\right\}$	6. $\left\{1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \ldots\right\}$
7. $\left\{\frac{1}{2}, -\frac{4}{3}, \frac{9}{4}, -\frac{16}{5}, \frac{25}{6}, \ldots\right\}$	8. {5, 8, 11, 14, 17,}

9-32 • Determine whether the sequence converges or diverges. If it converges, find the limit.

9. $a_n = 1 - (0.2)^n$ 10. $a_n = \frac{n^3}{n^3 + 1}$ 11. $a_n = \frac{3 + 5n^2}{n + n^2}$ 12. $a_n = \frac{n^3}{n + 1}$ 13. $a_n = \tan\left(\frac{2n\pi}{1 + 8n}\right)$ 14. $a_n = \frac{3^{n+2}}{5^n}$

15. $a_n = \frac{n^2}{\sqrt{n^3 + 4n}}$	16. $a_n = \sqrt{\frac{n+1}{9n+1}}$
17. $a_n = \frac{(-1)^n}{2\sqrt{n}}$	18. $a_n = \frac{(-1)^{n+1}n}{n+\sqrt{n}}$
19. $a_n = \cos(n/2)$	20. $a_n = \cos(2/n)$
21. $\left\{ \frac{(2n-1)!}{(2n+1)!} \right\}$	22. $a_n = \frac{\tan^{-1}n}{n}$
23. $\{n^2e^{-n}\}$	
24. $a_n = \ln(n+1) - \ln n$	
25. $a_n = \frac{\cos^2 n}{2^n}$	26. $a_n = 2^{-n} \cos n\pi$

27.
$$a_n = \left(1 + \frac{2}{n}\right)^n$$

28. $a_n = \frac{\sin 2n}{1 + \sqrt{n}}$
29. $\{0, 1, 0, 0, 1, 0, 0, 0, 1, \dots\}$
30. $a_n = \frac{(\ln n)^2}{n}$
31. $a_n = \ln(2n^2 + 1) - \ln(n^2 + 1)$

32.
$$a_n = \frac{(-3)^n}{n!}$$

- **33.** If \$1000 is invested at 6% interest, compounded annually, then after *n* years the investment is worth $a_n = 1000(1.06)^n$ dollars.
 - (a) Find the first five terms of the sequence $\{a_n\}$.
 - (b) Is the sequence convergent or divergent? Explain.

		Unless otherwise noted, all content on this page is © Cengage Learning.
Graphing calculator or computer required	CAS Computer algebra system required	1. Homework Hints at stewartcalculus.com

34. Find the first 40 terms of the sequence defined by

$$a_{n+1} = \begin{cases} \frac{1}{2}a_n & \text{if } a_n \text{ is an even number} \\ 3a_n + 1 & \text{if } a_n \text{ is an odd number} \end{cases}$$

and $a_1 = 11$. Do the same if $a_1 = 25$. Make a conjecture about this type of sequence.

- **35.** Suppose you know that $\{a_n\}$ is a decreasing sequence and all its terms lie between the numbers 5 and 8. Explain why the sequence has a limit. What can you say about the value of the limit?
- **36.** (a) If $\{a_n\}$ is convergent, show that

$$\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n$$

(b) A sequence {a_n} is defined by a₁ = 1 and a_{n+1} = 1/(1 + a_n) for n ≥ 1. Assuming that {a_n} is convergent, find its limit.

37–40 Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

37.
$$a_n = \frac{1}{2n+3}$$

38. $a_n = \frac{2n-3}{3n+4}$
39. $a_n = n(-1)^n$
40. $a_n = n + \frac{1}{n}$

41. Find the limit of the sequence

$$\left\{\sqrt{2},\sqrt{2\sqrt{2}},\sqrt{2\sqrt{2\sqrt{2}}},\ldots\right.$$

- 42. A sequence {a_n} is given by a₁ = √2, a_{n+1} = √2 + a_n.
 (a) By induction or otherwise, show that {a_n} is increasing and bounded above by 3. Apply the Monotonic Sequence Theorem to show that lim_{n→∞} a_n exists.
 (b) Find lim_{n→∞} a_n.
- 43. Use induction to show that the sequence defined by a₁ = 1, a_{n+1} = 3 1/a_n is increasing and a_n < 3 for all *n*. Deduce that {a_n} is convergent and find its limit.
- 44. Show that the sequence defined by

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{3 - a_n}$

satisfies $0 < a_n \le 2$ and is decreasing. Deduce that the sequence is convergent and find its limit.

45. (a) Fibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair which becomes productive at age 2 months. If we start with one newborn pair, how many pairs of rabbits will we have in the *n*th month? Show

that the answer is f_n , where $\{f_n\}$ is the Fibonacci sequence defined in Example 3(c).

- (b) Let $a_n = f_{n+1}/f_n$ and show that $a_{n-1} = 1 + 1/a_{n-2}$. Assuming that $\{a_n\}$ is convergent, find its limit.
- **46.** (a) Let $a_1 = a$, $a_2 = f(a)$, $a_3 = f(a_2) = f(f(a))$, ..., $a_{n+1} = f(a_n)$, where f is a continuous function. If $\lim_{n \to \infty} a_n = L$, show that f(L) = L.
 - (b) Illustrate part (a) by taking f(x) = cos x, a = 1, and estimating the value of L to five decimal places.
- **47.** We know that $\lim_{n\to\infty} (0.8)^n = 0$ [from 8] with r = 0.8]. Use logarithms to determine how large *n* has to be so that $(0.8)^n < 0.000001$.
- **48.** Use Definition 2 directly to prove that $\lim_{n\to\infty} r^n = 0$ when |r| < 1.
- **49.** Prove Theorem 6. [*Hint:* Use either Definition 2 or the Squeeze Theorem.]
- 50. Prove the Continuity and Convergence Theorem.
- **51.** Prove that if $\lim_{n\to\infty} a_n = 0$ and $\{b_n\}$ is bounded, then $\lim_{n\to\infty} (a_n b_n) = 0$.
- 52. (a) Show that if lim_{n→∞} a_{2n} = L and lim_{n→∞} a_{2n+1} = L, then {a_n} is convergent and lim_{n→∞} a_n = L.
 (b) If a₁ = 1 and

$$a_{n+1} = 1 + \frac{1}{1+a_n}$$

find the first eight terms of the sequence $\{a_n\}$. Then use part (a) to show that $\lim_{n\to\infty} a_n = \sqrt{2}$. This gives the **continued fraction expansion**

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \cdots}}$$

53. The size of an undisturbed fish population has been modeled by the formula

$$p_{n+1} = \frac{bp_n}{a+p_n}$$

where p_n is the fish population after *n* years and *a* and *b* are positive constants that depend on the species and its environment. Suppose that the population in year 0 is $p_0 > 0$.

- (a) Show that if $\{p_n\}$ is convergent, then the only possible values for its limit are 0 and b a.
- (b) Show that $p_{n+1} < (b/a)p_n$.
- (c) Use part (b) to show that if a > b, then lim_{n→∞} p_n = 0; in other words, the population dies out.
- (d) Now assume that a < b. Show that if $p_0 < b a$, then $\{p_n\}$ is increasing and $0 < p_n < b a$. Show also that if $p_0 > b a$, then $\{p_n\}$ is decreasing and $p_n > b a$. Deduce that if a < b, then $\lim_{n \to \infty} p_n = b a$.

Unless otherwise noted, all content on this page is C Cengage Learning.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.2 SERIES

• The current record (2011) is that π has been computed to more than ten trillion decimal places by Shigeru Kondo and Alexander Yee.

Sum of first <i>n</i> terms
0.50000000
0.75000000
0.87500000
0.93750000
0.96875000
0.98437500
0.99218750
0.99902344
0.99996948
0.99999905
0.99999997

What do we mean when we express a number as an infinite decimal? For instance, what does it mean to write

$$\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\ 50288$$
 . .

The convention behind our decimal notation is that any number can be written as an infinite sum. Here it means that

$$\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \frac{5}{10^8} + \cdots$$

where the three dots (\cdots) indicate that the sum continues forever, and the more terms we add, the closer we get to the actual value of π .

In general, if we try to add the terms of an infinite sequence $\{a_n\}_{n=1}^{\infty}$ we get an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

1

which is called an **infinite series** (or just a **series**) and is denoted, for short, by the symbol

$$\sum_{n=1}^{\infty} a_n \quad \text{or} \quad \sum a_n$$

Does it make sense to talk about the sum of infinitely many terms? It would be impossible to find a finite sum for the series

$$1+2+3+4+5+\cdots+n+\cdots$$

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, ... and, after the *n*th term, we get n(n + 1)/2, which becomes very large as *n* increases.

However, if we start to add the terms of the series

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots + \frac{1}{2^n} + \dots$$

we get $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$, $\frac{63}{64}$, ..., $1 - 1/2^n$, The table shows that as we add more and more terms, these *partial sums* become closer and closer to 1. In fact, by adding sufficiently many terms of the series we can make the partial sums as close as we like to 1. So it seems reasonable to say that the sum of this infinite series is 1 and to write

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n} + \dots = 1$$

We use a similar idea to determine whether or not a general series 1 has a sum. We consider the **partial sums**

 $s_{1} = a_{1}$ $s_{2} = a_{1} + a_{2}$ $s_{3} = a_{1} + a_{2} + a_{3}$ $s_{4} = a_{1} + a_{2} + a_{3} + a_{4}$

and, in general,

$$s_n = a_1 + a_2 + a_3 + \cdots + a_n = \sum_{i=1}^n a_i$$

These partial sums form a new sequence $\{s_n\}$, which may or may not have a limit. If $\lim_{n\to\infty} s_n = s$ exists (as a finite number), then, as in the preceding example, we call it the sum of the infinite series $\sum a_n$.

2 DEFINITION Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let s_n denote its *n*th partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum a_n$ is called **convergent** and we write

$$a_1 + a_2 + \dots + a_n + \dots = s$$
 or $\sum_{n=1}^{\infty} a_n = s$

The number *s* is called the **sum** of the series. If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write $\sum_{n=1}^{\infty} a_n = s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s. Notice that

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^n a_i$$

EXAMPLE 1 An important example of an infinite series is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1} \qquad a \neq 0$$

Each term is obtained from the preceding one by multiplying it by the common **ratio** *r*. (We have already considered the special case where $a = \frac{1}{2}$ and $r = \frac{1}{2}$ on page 436.)

If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$. Since $\lim_{n \to \infty} s_n$ doesn't exist, the geometric series diverges in this case.

If $r \neq 1$, we have

 $s_n = a + ar + ar^2 + \cdots + ar^{n-1}$ $rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$

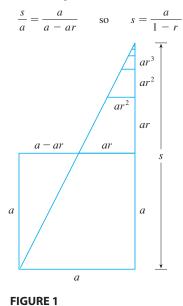
and

3

Subtracting these equations, we get

$$s_n - rs_n = a - ar^n$$
$$s_n = \frac{a(1 - r^n)}{1 - r}$$

Unless otherwise noted, all content on this page is C Cengage Learning.


To find this integral we integrate from 1 to t and then let $t \to \infty$. For a series, we sum from 1 to *n* and then let $n \to \infty$.

Compare with the improper integral

 $\int_{1}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{1}^{t} f(x) \, dx$

438 CHAPTER 8 SERIES

• Figure 1 provides a geometric demonstration of the result in Example 1. If the triangles are constructed as shown and *s* is the sum of the series, then, by similar triangles,

If -1 < r < 1, we know from (8.1.8) that $r^n \rightarrow 0$ as $n \rightarrow \infty$, so

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r} - \frac{a}{1 - r} \lim_{n \to \infty} r^n = \frac{a}{1 - r}$$

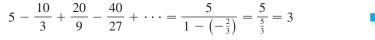
Thus when |r| < 1 the geometric series is convergent and its sum is a/(1 - r). If $r \le -1$ or r > 1, the sequence $\{r^n\}$ is divergent by (8.1.8) and so, by Equation 3, $\lim_{n\to\infty} s_n$ does not exist. Therefore the geometric series diverges in those cases.

We summarize the results of Example 1 as follows.

4 The geometric series

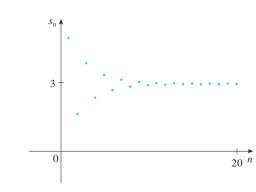
$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is


$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

If $|r| \ge 1$, the geometric series is divergent.

V EXAMPLE 2 Find the sum of the geometric series


$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

SOLUTION The first term is a = 5 and the common ratio is $r = -\frac{2}{3}$. Since $|r| = \frac{2}{3} < 1$, the series is convergent by 4 and its sum is

• What do we really mean when we say that the sum of the series in Example 2 is 3? Of course, we can't literally add an infinite number of terms, one by one. But, according to Definition 2, the total sum is the limit of the sequence of partial sums. So, by taking the sum of sufficiently many terms, we can get as close as we like to the number 3. The table shows the first ten partial sums s_n and the graph in Figure 2 shows how the sequence of partial sums approaches 3.

п	Sn
1	5.000000
2	1.666667
3	3.888889
4	2.407407
5	3.395062
6	2.736626
7	3.175583
8	2.882945
9	3.078037
10	2.947975
	1

EXAMPLE 3 Is the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ convergent or divergent?

SOLUTION Let's rewrite the *n*th term of the series in the form ar^{n-1} :

• Another way to identify *a* and *r* is to write out the first few terms:

$$4 + \frac{16}{3} + \frac{64}{9} + \cdots$$

$$\sum_{n=1}^{\infty} 2^{2n} 3^{1-n} = \sum_{n=1}^{\infty} (2^2)^n 3^{-(n-1)} = \sum_{n=1}^{\infty} \frac{4^n}{3^{n-1}} = \sum_{n=1}^{\infty} 4\left(\frac{4}{3}\right)^{n-1}$$

Unless otherwise noted, all content on this page is © Cengage Learning.

We recognize this series as a geometric series with a = 4 and $r = \frac{4}{3}$. Since r > 1, the series diverges by [4].

V EXAMPLE 4 Write the number $2.3\overline{17} = 2.3171717...$ as a ratio of integers.

SOLUTION

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

After the first term we have a geometric series with $a = 17/10^3$ and $r = 1/10^2$. Therefore

 $2.3\overline{17} = 2.3 + \frac{17}{10^3} = 2.3 + \frac{17}{1000} = 2.3 + \frac{17}{1000} = \frac{199}{100} = \frac{23}{10} + \frac{17}{990} = \frac{1147}{495}$

TEC Module 8.2 explores a series that depends on an angle θ in a triangle and enables you to see how rapidly the series converges when θ varies.

EXAMPLE 5 Find the sum of the series $\sum_{n=0}^{\infty} x^n$, where |x| < 1.

SOLUTION Notice that this series starts with n = 0 and so the first term is $x^0 = 1$. (With series, we adopt the convention that $x^0 = 1$ even when x = 0.) Thus

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots$$

This is a geometric series with a = 1 and r = x. Since |r| = |x| < 1, it converges and [4] gives

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

EXAMPLE 6 Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, and find its sum.

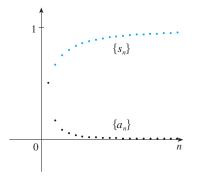
SOLUTION This is not a geometric series, so we go back to the definition of a convergent series and compute the partial sums.

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)}$$

We can simplify this expression if we use the partial fraction decomposition

$$\frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}$$

(see Section 6.3). Thus we have


$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{p}\right) + \left(\frac{1}{p} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}$$

• Notice that the terms cancel in pairs. This is an example of a **telescoping sum**: Because of all the cancellations, the sum collapses (like a pirate's collapsing telescope) into just two terms.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

440 CHAPTER 8 SERIES

• Figure 3 illustrates Example 6 by showing the graphs of the sequence of terms $a_n = 1/[n(n + 1)]$ and the sequence $\{s_n\}$ of partial sums. Notice that $a_n \to 0$ and $s_n \to 1$. See Exercises 46 and 47 for two geometric interpretations of Example 6.

and so

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

Therefore the given series is convergent and

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

V EXAMPLE 7 Show that the harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

is divergent.

SOLUTION For this particular series it's convenient to consider the partial sums s_2 , s_4 , s_8 , s_{16} , s_{32} , ... and show that they become large.

$$s_{2} = 1 + \frac{1}{2}$$

$$s_{4} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) = 1 + \frac{2}{2}$$

$$s_{8} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}$$

$$s_{16} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2}$$

Similarly, $s_{32} > 1 + \frac{5}{2}$, $s_{64} > 1 + \frac{6}{2}$, and in general

$$s_{2^n} > 1 + \frac{n}{2}$$

This shows that $s_{2^n} \to \infty$ as $n \to \infty$ and so $\{s_n\}$ is divergent. Therefore the harmonic series diverges.

6 THEOREM If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.

PROOF Let $s_n = a_1 + a_2 + \cdots + a_n$. Then $a_n = s_n - s_{n-1}$. Since $\sum a_n$ is convergent, the sequence $\{s_n\}$ is convergent. Let $\lim_{n\to\infty} s_n = s$. Since $n - 1 \to \infty$ as $n \to \infty$, we also have $\lim_{n\to\infty} s_{n-1} = s$. Therefore

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$$

NOTE 1 With any *series* Σ a_n we associate two *sequences:* the sequence $\{s_n\}$ of its partial sums and the sequence $\{a_n\}$ of its terms. If Σ a_n is convergent, then the limit of

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

 The method used in Example 7 for showing that the harmonic series diverges is due to the French scholar Nicole Oresme (1323–1382).

Unless otherwise noted, all content on this page is © Cengage Learning.

the sequence $\{s_n\}$ is *s* (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence $\{a_n\}$ is 0.

NOTE 2 The converse of Theorem 6 is not true in general. If $\lim_{n\to\infty} a_n = 0$, we cannot conclude that $\sum a_n$ is convergent. Observe that for the harmonic series $\sum 1/n$ we have $a_n = 1/n \to 0$ as $n \to \infty$, but we showed in Example 7 that $\sum 1/n$ is divergent.

7 TEST FOR DIVERGENCE If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent, then it is convergent, and so $\lim_{n\to\infty} a_n = 0$.

EXAMPLE 8 Show that the series
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$$
 diverges.

SOLUTION

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0$$

So the series diverges by the Test for Divergence.

NOTE 3 If we find that $\lim_{n\to\infty} a_n \neq 0$, we know that $\sum a_n$ is divergent. If we find that $\lim_{n\to\infty} a_n = 0$, we know *nothing* about the convergence or divergence of $\sum a_n$. Remember the warning in Note 2: If $\lim_{n\to\infty} a_n = 0$, the series $\sum a_n$ might converge or it might diverge.

8 THEOREM If Σa_n and Σb_n are convergent series, then so are the series Σca_n (where *c* is a constant), $\Sigma (a_n + b_n)$, and $\Sigma (a_n - b_n)$, and

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
 (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ (iii) $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$

These properties of convergent series follow from the corresponding Limit Laws for Sequences in Section 8.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

$$s_n = \sum_{i=1}^n a_i$$
 $s = \sum_{n=1}^\infty a_n$ $t_n = \sum_{i=1}^n b_i$ $t = \sum_{n=1}^\infty b_n$

The *n*th partial sum for the series $\sum (a_n + b_n)$ is

$$u_n = \sum_{i=1}^n (a_i + b_i)$$

Unless otherwise noted, all content on this page is © Cengage Learning.

and, using Equation 5.2.10, we have

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \sum_{i=1}^n (a_i + b_i) = \lim_{n \to \infty} \left(\sum_{i=1}^n a_i + \sum_{i=1}^n b_i \right)$$
$$= \lim_{n \to \infty} \sum_{i=1}^n a_i + \lim_{n \to \infty} \sum_{i=1}^n b_i$$
$$= \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n = s + t$$

Therefore $\sum (a_n + b_n)$ is convergent and its sum is

$$\sum_{n=1}^{\infty} (a_n + b_n) = s + t = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

EXAMPLE 9 Find the sum of the series
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$$
.

SOLUTION The series $\sum 1/2^n$ is a geometric series with $a = \frac{1}{2}$ and $r = \frac{1}{2}$, so

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

In Example 6 we found that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

So, by Theorem 8, the given series is convergent and

$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right) = 3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} + \sum_{n=1}^{\infty} \frac{1}{2^n} = 3 \cdot 1 + 1 = 4$$

NOTE 4 A finite number of terms doesn't affect the convergence or divergence of a series. For instance, suppose that we were able to show that the series

$$\sum_{n=4}^{\infty} \frac{n}{n^3 + 1}$$

is convergent. Since

$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1} = \frac{1}{2} + \frac{2}{9} + \frac{3}{28} + \sum_{n=4}^{\infty} \frac{n}{n^3 + 1}$$

it follows that the entire series $\sum_{n=1}^{\infty} n/(n^3 + 1)$ is convergent. Similarly, if it is known that the series $\sum_{n=N+1}^{\infty} a_n$ converges, then the full series

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{N} a_n + \sum_{n=N+1}^{\infty} a_n$$

is also convergent.

8.2 EXERCISES

- (a) What is the difference between a sequence and a series?(b) What is a convergent series? What is a divergent series?
- **2.** Explain what it means to say that $\sum_{n=1}^{\infty} a_n = 5$.

3-6 Calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

4. $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$
5. $\sum_{n=1}^{\infty} \frac{n}{1+\sqrt{n}}$
6. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$

7-12 Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

7.
$$10 - 2 + 0.4 - 0.08 + \cdots$$

8.
$$2 + 0.5 + 0.125 + 0.03125 + \cdots$$

9.
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$$

10. $\sum_{n=1}^{\infty} \frac{10^n}{(-9)^{n-1}}$
11. $\sum_{n=0}^{\infty} \frac{\pi^n}{3^{n+1}}$
12. $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^n}$

13–24 Determine whether the series is convergent or divergent. If it is convergent, find its sum.

13.
$$\sum_{n=1}^{\infty} \frac{3^{n}}{e^{n-1}}$$
14.
$$\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^{2}}$$
15.
$$\sum_{n=1}^{\infty} \frac{n-1}{3n-1}$$
16.
$$\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}$$
17.
$$\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}$$
18.
$$\sum_{n=1}^{\infty} \cos \frac{1}{n}$$
19.
$$\sum_{n=1}^{\infty} \sqrt[n]{2}$$
20.
$$\sum_{n=1}^{\infty} [(0.8)^{n-1} - (0.3)^{n}]$$
21.
$$\sum_{n=1}^{\infty} \arctan n$$
22.
$$\sum_{k=1}^{\infty} (\cos 1)^{k}$$

23.
$$\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots$$

24. $\frac{1}{3} + \frac{2}{9} + \frac{1}{27} + \frac{2}{81} + \frac{1}{243} + \frac{2}{729} + \cdots$

25–28 Determine whether the series is convergent or divergent by expressing s_n as a telescoping sum (as in Example 6). If it is convergent, find its sum.

25.
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

26. $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$
27. $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$
28. $\sum_{n=1}^{\infty} (e^{1/n} - e^{1/(n+1)})$

29. Let $x = 0.99999 \ldots$

(a) Do you think that x < 1 or x = 1?

- (b) Sum a geometric series to find the value of x.
- (c) How many decimal representations does the number 1 have?
- (d) Which numbers have more than one decimal representation?

30. A sequence of terms is defined by

$$a_1 = 1$$
 $a_n = (5 - n)a_{n-1}$

Calculate $\sum_{n=1}^{\infty} a_n$.

31–34 • Express the number as a ratio of integers.

31. $0.\overline{8} = 0.8888...$ **32.** $0.\overline{46} = 0.46464646...$ **33.** $2.\overline{516} = 2.516516516...$ **34.** $10.1\overline{35} = 10.135353535...$

35–37 • Find the values of x for which the series converges. Find the sum of the series for those values of x.

35.
$$\sum_{n=1}^{\infty} (-5)^n x^n$$

36. $\sum_{n=0}^{\infty} (-4)^n (x-5)^n$
37. $\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n}$

38. We have seen that the harmonic series is a divergent series whose terms approach 0. Show that

$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right)$$

is another series with this property.

39. If the *n*th partial sum of a series $\sum_{n=1}^{\infty} a_n$ is

$$s_n = \frac{n-1}{n+1}$$

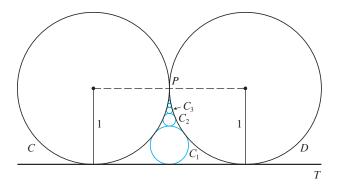
find a_n and $\sum_{n=1}^{\infty} a_n$.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

444 CHAPTER 8 SERIES

- **40.** If the *n*th partial sum of a series $\sum_{n=1}^{\infty} a_n$ is $s_n = 3 n2^{-n}$, find a_n and $\sum_{n=1}^{\infty} a_n$.
- **41.** A patient takes 150 mg of a drug at the same time every day. Just before each tablet is taken, 5% of the drug remains in the body.
 - (a) What quantity of the drug is in the body after the third tablet? After the *n*th tablet?
 - (b) What quantity of the drug remains in the body in the long run?
- **42.** After injection of a dose *D* of insulin, the concentration of insulin in a patient's system decays exponentially and so it can be written as De^{-at} , where *t* represents time in hours and *a* is a positive constant.
 - (a) If a dose D is injected every T hours, write an expression for the sum of the residual concentrations just before the (n + 1)st injection.
 - (b) Determine the limiting pre-injection concentration.
 - (c) If the concentration of insulin must always remain at or above a critical value *C*, determine a minimal dosage *D* in terms of *C*, *a*, and *T*.
- **43.** When money is spent on goods and services, those who receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the *multiplier effect*. In a hypothetical isolated community, the local government begins the process by spending *D* dollars. Suppose that each recipient of spent money spends 100c% and saves 100s% of the money that he or she receives. The values *c* and *s* are called the *marginal propensity to consume* and the *marginal propensity to save* and, of course, c + s = 1.
 - (a) Let S_n be the total spending that has been generated after *n* transactions. Find an equation for S_n .
 - (b) Show that lim_{n→∞} S_n = kD, where k = 1/s. The number k is called the *multiplier*. What is the multiplier if the marginal propensity to consume is 80%?

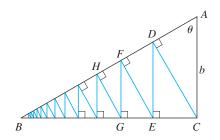
Note: The federal government uses this principle to justify deficit spending. Banks use this principle to justify lending a large percentage of the money that they receive in deposits.


- **44.** A certain ball has the property that each time it falls from a height *h* onto a hard, level surface, it rebounds to a height *rh*, where 0 < r < 1. Suppose that the ball is dropped from an initial height of *H* meters.
 - (a) Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.
 - (b) Calculate the total time that the ball travels. (Use the fact that the ball falls $\frac{1}{2}gt^2$ meters in *t* seconds.)
 - (c) Suppose that each time the ball strikes the surface with velocity v it rebounds with velocity -kv, where 0 < k < 1. How long will it take for the ball to come to rest?

45. Find the value of c if
$$\sum_{n=2}^{\infty} (1 + c)^{-n} = 2$$
.

46. Graph the curves y = xⁿ, 0 ≤ x ≤ 1, for n = 0, 1, 2, 3, 4, ... on a common screen. By finding the areas between successive curves, give a geometric demonstration of the fact, shown in Example 6, that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$


47. The figure shows two circles *C* and *D* of radius 1 that touch at *P*. *T* is a common tangent line; C_1 is the circle that touches *C*, *D*, and *T*; C_2 is the circle that touches *C*, *D*, and C_1 ; C_3 is the circle that touches *C*, *D*, and C_2 . This procedure can be continued indefinitely and produces an infinite sequence of circles $\{C_n\}$. Find an expression for the diameter of C_n and thus provide another geometric demonstration of Example 6.

48. A right triangle *ABC* is given with $\angle A = \theta$ and |AC| = b. *CD* is drawn perpendicular to *AB*, *DE* is drawn perpendicular to *BC*, *EF* \perp *AB*, and this process is continued indefinitely as shown in the figure. Find the total length of all the perpendiculars

$$|CD| + |DE| + |EF| + |FG| + \cdots$$

in terms of b and θ .

Unless otherwise noted, all content on this page is C Cengage Learning.