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8.1 SEQUENCES
A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the
nth term. We will deal exclusively with infinite sequences and so each term will
have a successor .

Notice that for every positive integer there is a corresponding number and so
a sequence can be defined as a function whose domain is the set of positive integers.
But we usually write instead of the function notation for the value of the func-
tion at the number .

NOTATION The sequence { , , , . . .} is also denoted by

EXAMPLE 1 Some sequences can be defined by giving a formula for the nth term.
In the following examples we give three descriptions of the sequence: one by using
the preceding notation, another by using the defining formula, and a third by writing
out the terms of the sequence. Notice that doesn’t have to start at 1.

(a)  

(b)  

(c)  

(d)  ■

a1, a2, a3, a4, . . . , an, . . .

a1 a2 an

an

an�1

n an

an f �n�
n

a1 a2 a3

�an � or �an � n�1
�

n

� n

n � 1�n�1

�

an �
n

n � 1 �1

2
, 

2

3
, 

3

4
, 

4

5
, . . . , 

n

n � 1
, . . .�

���1�n�n � 1�
3n � an �

��1�n�n � 1�
3n ��

2

3
, 

3

9
, �

4

27
, 

5

81
, . . . , 

��1�n�n � 1�
3n , . . .�

{sn � 3 }n�3
�

an � sn � 3 , n � 3 {0, 1, s2 , s3 , . . . , sn � 3 , . . .}

�cos 
n�

6 �n�0

�

an � cos 
n�

6
, n � 0 �1, 

s3

2
, 

1

2
, 0, . . . , cos 

n�

6
, . . .�

SERIES
Infinite series are sums of infinitely many terms. (One of our aims in this chapter is to define exactly
what is meant by an infinite sum.) Their importance in calculus stems from Newton’s idea of represent-
ing functions as sums of infinite series. For instance, in finding areas he often integrated a function by
first expressing it as a series and then integrating each term of the series. We will pursue his idea in
Section 8.7 in order to integrate such functions as . (Recall that we have previously been unable to
do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel func-
tions, are defined as sums of series, so it is important to be familiar with the basic concepts of conver-
gence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 8.8. In studying fields as diverse as
optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with
the first few terms in the series that represents it.

e�x2

8
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EXAMPLE 2 Find a formula for the general term of the sequence

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

Notice that the numerators of these fractions start with 3 and increase by 1 whenever
we go to the next term. The second term has numerator 4, the third term has numer-
ator 5; in general, the th term will have numerator . The denominators are the
powers of 5, so has denominator . The signs of the terms are alternately posi-
tive and negative, so we need to multiply by a power of . In Example 1(b) the
factor meant we started with a negative term. Here we want to start with a
positive term and so we use or . Therefore

■

EXAMPLE 3 Here are some sequences that don’t have a simple defining equation.

(a) The sequence , where is the population of the world as of January 1 in
the year .

(b) If we let be the digit in the nth decimal place of the number , then is a
well-defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 45). ■

A sequence such as the one in Example 1(a), , can be pictured
either by plotting its terms on a number line as in Figure 1 or by plotting its graph as
in Figure 2. Note that, since a sequence is a function whose domain is the set of posi-
tive integers, its graph consists of isolated points with coordinates

. . .    . . .

From Figure 1 or 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference

�3

5
, �

4

25
, 

5

125
, �

6

625
, 

7

3125
, . . .�

a 1 �
3

5
a 2 � �

4

25
a 3 �

5

125
a 4 � �

6

625
a 5 �

7

3125

n n � 2
an 5 n

�1
��1� n

��1� n�1 ��1� n�1

an � ��1� n�1 n � 2

5 n

�pn� pn

n

an e �an �

�7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .�

� fn�

f1 � 1 f2 � 1 fn � fn�1 � fn�2 n � 3

�1, 1, 2, 3, 5, 8, 13, 21, . . .�

an � n��n � 1�

�1, a1� �2, a2� �3, a3� �n, an �

an � n��n � 1�
n

1 �
n

n � 1
�

1

n � 1

anV

0 11

2

a¡ a™ a£
a¢

FIGURE 1

FIGURE 2

0 n

an

1

1

2 3 4 5 6 7

7

8
a¶=
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can be made as small as we like by taking sufficiently large. We indicate this by 
writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that
the following definition of the limit of a sequence is very similar to the definition of a
limit of a function at infinity given in Section 1.6.

DEFINITION A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently
large. If exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have
the limit .

A more precise version of Definition 1 is as follows.

DEFINITION A sequence has the limit and we write

if for every there is a corresponding integer such that

if    then    

Definition 2 is illustrated by Figure 4, in which the terms , , , . . . are plotted
on a number line. No matter how small an interval is chosen, there exists
an such that all terms of the sequence from onward must lie in that interval.

n

lim
n l �

n

n � 1
� 1

lim
n l �

an � L

�an � L n

�an � L

lim
n l �

an � L or an l L as n l �

an L n
limn l � an

L

0 n

an

L

0 n

an

L

FIGURE 3
Graphs of two
sequences with
lim an= L
n     `

�an� L

lim
n l �

an � L or an l L as n l �

� � 0 N

n � N 	 an � L 	 	 �

a1 a2 a3

�L � �, L � ��
N aN�1

FIGURE 4 0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

1

2

■ Compare this definition with 
Definition 1.6.7.
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Another illustration of Definition 2 is given in Figure 5. The points on the graph of
must lie between the horizontal lines and if . This

picture must be valid no matter how small is chosen, but usually a smaller requires
a larger .

If you compare Definition 2 with Definition 1.6.7, you will see that the only differ-
ence between and is that is required to be an inte-
ger. Thus we have the following theorem, which is illustrated by Figure 6.

THEOREM If and when is an integer, then 
.

In particular, since we know that when , we have

if 

If becomes large as n becomes large, we use the notation . The
following precise definition is similar to Definition 1.6.8.

DEFINITION means that for every positive number there
is a positive integer such that

if    then    

If , then the sequence is divergent but in a special way. We say
that diverges to .

The Limit Laws given in Section 1.4 also hold for the limits of sequences and their
proofs are similar.

�an� y � L � � y � L � � n � N
� �

N

20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

FIGURE 5

limn l � an � L limx l � f �x� � L n

limx l � f �x� � L f �n� � an n
limn l � an � L

FIGURE 6

y=ƒ

20 x

y

1 3 4

L

limx l � �1�xr � � 0 r � 0

lim
n l �

1

nr � 0 r � 0

an lim n l � an � �

limn l � an � � M
N

n � N an � M

lim n l � an � � �an �
�an � �

3

4

5
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If and are convergent sequences and is a constant, then

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem,
whose proof is left as Exercise 49.

THEOREM If , then .

EXAMPLE 4 Find .

SOLUTION The method is similar to the one we used in Section 1.6: Divide numer-
ator and denominator by the highest power of that occurs in the denominator and
then use the Limit Laws.

Here we used Equation 4 with . ■

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

c � clim
n l �

can � c lim
n l �

an

lim
n l �

�an bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

an

bn
�

lim
n l �

an

lim
n l �

bn
if  lim

n l �
bn � 0         

lim
n l �

an
p � [lim

n l �
an] p

if   p � 0 and an � 0

lim
n l �

bn � Llim
n l �

an � lim
n l �

cn � Ln � n0an 
 bn 
 cn

lim
n l �

an � 0lim
n l �

	 an 	 � 06

lim
n l �

n

n � 1

n

lim
n l �

n

n � 1
� lim

n l �

1

1 �
1

n

�
lim
n l �

1 

lim
n l �

1 � lim
n l �

1

n

�
1

1 � 0
� 1

r � 1

c�bn ��an �

Squeeze Theorem for Sequences

■ This shows that the guess we made 
earlier from Figures 1 and 2 was correct.

FIGURE 7
The sequence �bn� is squeezed
between the sequences �an�
and �cn�.

0 n

cn

an

bn

Limit Laws for Sequences
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EXAMPLE 5 Calculate .

SOLUTION Notice that both numerator and denominator approach infinity as
. We can’t apply l’Hospital’s Rule directly because it applies not to sequences

but to functions of a real variable. However, we can apply l’Hospital’s Rule to the
related function and obtain

Therefore, by Theorem 3, we have

■

EXAMPLE 6 Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1
and infinitely often, does not approach any number. Thus does
not exist; that is, the sequence is divergent. ■

EXAMPLE 7 Evaluate if it exists.

SOLUTION

Therefore, by Theorem 6,

■

The following theorem says that if we apply a continuous function to the terms of
a convergent sequence, the result is also convergent. The proof is left as Exercise 50.

CONTINUITY AND CONVERGENCE THEOREM If and the function
is continuous at , then

EXAMPLE 8 Find .

SOLUTION Because the sine function is continuous at , the Continuity and Con-
vergence Theorem enables us to write

■

lim
n l �

ln n

n

n l �

f �x� � �ln x��x

lim
x l �

ln x

x
� lim

x l �

1�x

1
� 0

lim
n l �

ln n

n
� 0

an � ��1�n

��1, 1, �1, 1, �1, 1, �1, . . .�

lim n l � ��1�nan�1
���1�n �

lim
n l �

��1�n

n

lim
n l �


 ��1�n

n 
 � lim
n l �

1

n
� 0

lim
n l �

��1�n

n
� 0

lim
n l �

an � L
Lf

lim
n l �

f �an� � f �L�

lim
n l �

sin���n�

0

lim
n l �

sin���n� � sin�lim
n l �

���n�� � sin 0 � 0

0 n

an

1

1

2 3 4

_1

FIGURE 8

■ The graph of the sequence in 
Example 7 is shown in Figure 9 and
supports the answer.

FIGURE 9

0 n

an

1

1

_1

■ www.stewartcalculus.com
See Additional Example A.
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 EXAMPLE 9 Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as but here
we have no corresponding function for use with l’Hospital’s Rule ( is not defined
when is not an integer). Let’s write out a few terms to get a feeling for what 
happens to as gets large:

It appears from these expressions and the graph in Figure 10 that the terms are
decreasing and perhaps approach 0. To confirm this, observe from Equation 7 that

Notice that the expression in parentheses is at most 1 because the numerator is less
than (or equal to) the denominator. So

We know that as . Therefore as by the Squeeze 
Theorem. ■

EXAMPLE 10 For what values of is the sequence convergent?

SOLUTION We know from Section 1.6 and the graphs of the exponential functions
in Section 3.1 that for and for .
Therefore, putting and using Theorem 3, we have

For the cases and we have

and    

If , then , so

and therefore by Theorem 6. If , then diverges as in 

an � n!�nnV

n! � 1 � 2 � 3 � � � � � n

n l �
x!

x
nan

a3 �
1 � 2 � 3

3 � 3 � 3
a2 �

1 � 2

2 � 2
a1 � 1

an �
1 � 2 � 3 � � � � � n

n � n � n � � � � � n
7

an �
1

n �2 � 3 � � � � � n

n � n � � � � � n�

0 	 an 

1

n

n l �an l 0n l �1�n l 0

�r n �rV

0 	 a 	 1limx l � ax � 0a � 1limx l � ax � �
a � r

lim
n l �

r n � ��

0

if r � 1

if 0 	 r 	 1

r � 0r � 1

lim
n l �

0 n � lim
n l �

0 � 0lim
n l �

1n � lim
n l �

1 � 1

0 	 	 r 	 	 1�1 	 r 	 0

lim
n l �

	 r n 	 � lim
n l �

	 r 	n � 0

�r n �r 
 �1lim n l � r n � 0
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■ CREATING GRAPHS OF SEQUENCES
Some computer algebra systems have spe-
cial commands that enable us to create
sequences and graph them directly. With
most graphing calcula tors, however,
sequences can be graphed by using para-
metric equations. For instance, the
sequence in Example 9 can be graphed 
by entering the parametric equations

and graphing in dot mode starting with 
, setting the -step equal to . The 

result is shown in Figure 10.
1tt � 1

x � t y � t!�t t

FIGURE 10

1

0
10
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 Example 6. Figure 11 shows the graphs for various values of . (The case is
shown in Figure 8.)

■

The results of Example 10 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .

DEFINITION A sequence is called increasing if for all
, that is, It is called decreasing if for all
. A sequence is monotonic if it is either increasing or decreasing.

EXAMPLE 11 The sequence is decreasing because

and so for all . ■

EXAMPLE 12 Show that the sequence is decreasing.

SOLUTION We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1

n

an

1
1

FIGURE 11
The sequence an=rn

�r n � �1 	 r 
 1
r

lim
n l �

r n � �0

1

if �1 	 r 	 1

if r � 1

r r � �1

8

�an � an 	 an�1

n � 1 a1 	 a2 	 a3 	 � � � . an � an�1

n � 1

� 3

n � 5�
3

n � 5
�

3

�n � 1� � 5
�

3

n � 6

an � an�1 n � 1

an �
n

n2 � 1

an�1 	 an

n � 1

�n � 1�2 � 1
	

n

n2 � 1

n � 1

�n � 1�2 � 1
	

n

n2 � 1
&? �n � 1��n2 � 1� 	 n�n � 1�2 � 1�

9

n3 � n2 � n � 1 	 n3 � 2n2 � 2n&?

1 	 n2 � n&?
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■ Another way to do Example 12 is to
show that the function

is decreasing because for
.x � 1

f ��x� 	 0

x � 1f �x� �
x

x 2 � 1

■ The right side is smaller because it
has a larger denominator.
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 Since , we know that the inequality is true. Therefore 
and so is decreasing. ■

DEFINITION A sequence is bounded above if there is a number 
such that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the 
sequence satisfies but is divergent from Example 6] and 
not every mono tonic sequence is convergent . But if a sequence is 
both bounded and monotonic, then it must be convergent. This fact is proved as 
The o rem 11, but intuitively you can understand why it is true by looking at Fig-
ure 12. If is increasing and for all , then the terms are forced to crowd
together and approach some number .

The proof of Theorem 11 is based on the Completeness Axiom for the set of
real numbers, which says that if is a nonempty set of real numbers that has an upper
bound ( for all in ), then has a least upper bound . (This means that

is an upper bound for , but if is any other upper bound, then .) The 
Completeness Axiom is an expression of the fact that there is no gap or hole in the real
number line.

MONOTONIC SEQUENCE THEOREM Every bounded, monotonic sequence
is convergent.

PROOF Suppose is an increasing sequence. Since is bounded, the set
has an upper bound. By the Completeness Axiom it has a least

upper bound . Given , is not an upper bound for (since is the least
upper bound). Therefore

But the sequence is increasing so for every . Thus if we have

so

�an � M

an 
 M for all n � 1

m

m 
 an for all n � 1

�an �

an � n �an � 0�
an � n��n � 1� 0 	 an 	 1 n

an � ��1�n �1 
 an 
 1
�an � n l ��

�an � an 
 M n
L

�

S
M x 
 M x S S b

b S M b 
 M

�an � �an �
S � �an 	 n � 1�

L � � 0 L � � S L

aN � L � � for some integer N

an � aN n � N n � N

an � L � �

0 
 L � an 	 �

an�1 	 ann2 � n � 1n � 1
�an �

10

11
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20 n

an

1 3

L

M

FIGURE 12
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 since . Thus

so .
A similar proof (using the greatest lower bound) works if is decreasing. ■

The proof of Theorem 11 shows that a sequence that is increasing and bounded
above is convergent. (Likewise, a decreasing sequence that is bounded below is con-
vergent.) This fact is used many times in dealing with infinite series in Sections 8.2
and 8.3.

Another use of Theorem 11 is indicated in Exercises 42– 44.

an 
 L

	 L � an 	 	 � whenever n � N

lim n l � an � L
�an �

434 CHAPTER 8 SERIES

■ www.stewartcalculus.com
See Additional Example B.

8.1 EXERCISES

1. (a) What is a sequence?
(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

3. List the first six terms of the sequence defined by

Does the sequence appear to have a limit? If so, find it.

4. List the first nine terms of the sequence . Does
this sequence appear to have a limit? If so, find it. If not,
explain why.

5–8 ■ Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

5. 6.

7. 8.

9–32 ■ Determine whether the sequence converges or diverges.
If it converges, find the limit.

9. 10.

11. 12.

13. 14.

limn l � an � 8
limn l � an � �

an �
n

2n � 1

�cos�n��3��

an

��3, 2, �4
3 , 8

9 , �16
27 , . . .� �1, �1

3 , 1
9 , � 1

27 , 1
81 , . . .�

� 1
2 , �4

3 , 9
4 , �16

5 , 25
6 , . . .� �5, 8, 11, 14, 17, . . .�

an � 1 � �0.2�n an �
n3

n3 � 1

an �
3 � 5n2

n � n2 an �
n3

n � 1

an � tan� 2n�

1 � 8n� an �
3n�2

5n

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25. 26.

27. 28.

29. 30.

31.

32.

33. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.

an �
n2

sn3 � 4n
an � � n � 1

9n � 1

an �
��1�n

2sn
an �

��1�n�1n

n � sn

an � cos�n�2� an � cos�2�n�

� �2n � 1 �!
�2n � 1�!� an �

tan�1n

n

�n2e �n�

an � ln�n � 1� � ln n

an �
cos2n

2n an � 2�n cos n�

an � �1 �
2

n�
n

an �
sin 2n

1 � sn

�0, 1, 0, 0, 1, 0, 0, 0, 1, . . . � an �
�ln n�2

n

an � ln�2n2 � 1� � ln�n2 � 1�

an �
��3�n

n!

n an � 1000�1.06�n

�an �

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints at stewartcalculus.comCAS
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34. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

35. Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

36. (a) If is convergent, show that

(b) A sequence is defined by and
for . Assuming that is

convergent, find its limit.

37–40 ■ Determine whether the sequence is increasing,
decreasing, or not monotonic. Is the sequence bounded?

37. 38.

39. 40.

41. Find the limit of the sequence

42. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic
Sequence Theorem to show that exists.

(b) Find .

43. Use induction to show that the sequence defined by ,
is increasing and for all . Deduce

that is convergent and find its limit.

44. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

45. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair pro-
duces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show

an�1 � �1
2 an

3an � 1

if an is an even number

if an is an odd number

a1 � 25a1 � 11

�an �

�an �

lim
n l �

an�1 � lim
n l �

an

a1 � 1�an �
�an �n � 1an�1 � 1��1 � an �

an �
2n � 3

3n � 4
an �

1

2n � 3

an � n �
1

n
an � n��1�n

{s2 , s2s2 , s2s2s2 , . . .}
an�1 � s2 � ana1 � s2�an �

�an �

limn l � an

limn l � an

a1 � 1
nan 	 3an�1 � 3 � 1�an

�an �

an�1 �
1

3 � an
a1 � 2

0 	 an 
 2

nth
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that the answer is , where is the Fibonacci
sequence defined in Example 3(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

46. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and 

estimating the value of to five decimal places.

47. We know that [from with ].
Use logarithms to determine how large has to be so that

.

48. Use Definition 2 directly to prove that 
when .

49. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

50. Prove the Continuity and Convergence Theorem.

51. Prove that if and is bounded, then
.

52. (a) Show that if and , 
then is convergent and .

(b) If and

find the first eight terms of the sequence . Then use 
part (a) to show that . This gives the 
continued fraction expansion

53. The size of an undisturbed fish population has been
modeled by the formula

where is the fish population after years and and are
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is .
(a) Show that if is convergent, then the only possible 

values for its limit are 0 and .
(b) Show that .
(c) Use part (b) to show that if , then ; 

in other words, the population dies out.
(d) Now assume that . Show that if , then

is increasing and . Show also that 
if , then is decreasing and .
Deduce that if , then .

a1 � a a2 � f �a� a3 � f �a2� � f � f �a��
an�1 � f �an � f
limn l � an � L f �L� � L

f �x� � cos x a � 1
L

limn l � �0.8�n � 0 r � 0.8
n

�0.8�n 	 0.000001

lim n l � r n � 0

	 r 	 	 1

limn l � an � 0 �bn�
limn l � �an bn� � 0

lim n l � a2n � L lim n l � a2n�1 � L
�an � lim n l � an � L

a1 � 1

an�1 � 1 �
1

1 � an

�an �
lim n l � an � s2

s2 � 1 �
1

2 �
1

2 � � � �

pn�1 �
bpn

a � pn

pn n a b

p0 � 0
� pn�

b � a
pn�1 	 �b�a�pn

a � b limn l � pn � 0

a 	 b p 0 	 b � a
� pn� 0 	 pn 	 b � a

p 0 � b � a � pn� pn � b � a
a 	 b limn l � pn � b � a

�an �

8

fn � fn �

an�1 � 1 � 1�an�2an � fn�1�fn
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 8.2 SERIES
What do we mean when we express a number as an infinite decimal? For instance,
what does it mean to write

The convention behind our decimal notation is that any number can be written as an
infinite sum. Here it means that

where the three dots indicate that the sum continues forever, and the more terms
we add, the closer we get to the actual value of .

In general, if we try to add the terms of an infinite sequence we get an
expression of the form

which is called an infinite series (or just a series) and is denoted, for short, by the
symbol

Does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 
21, . . . and, after the term, we get , which becomes very large as 
increases.

However, if we start to add the terms of the series

we get , , , , , , . . . , , . . . . The table shows that as we add more and
more terms, these partial sums become closer and closer to 1. In fact, by adding suf-
ficiently many terms of the series we can make the partial sums as close as we like 
to 1. So it seems reasonable to say that the sum of this infinite series is 1 and to write

We use a similar idea to determine whether or not a general series has a sum.
We consider the partial sums

� � 3.14159 26535 89793 23846 26433 83279 50288 . . .

� � 3 �
1

10
�

4

102 �
1

103 �
5

104 �
9

105 �
2

106 �
6

107 �
5

108 � ���

�����
�

�an �n�1
�

a1 � a2 � a3 � � � � � an � � � �

�
�

n�1
an or � an

1

1 � 2 � 3 � 4 � 5 � � � � � n � � � �

nth n�n � 1��2 n

1

2
�

1

4
�

1

8
�

1

16
�

1

32
�

1

64
� � � � �

1

2n � � � �

1
2

3
4

7
8

15
16

31
32

63
64 1 � 1�2n

�
�

n�1

1

2n �
1

2
�

1

4
�

1

8
�

1

16
� � � � �

1

2n � � � � � 1

s1 � a1

s2 � a1 � a2

s3 � a1 � a2 � a3

s4 � a1 � a2 � a3 � a4

1
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■ The current record (2011) is that 
has been computed to more than ten tril-
lion decimal places by Shigeru Kondo
and Alexander Yee.

�

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997
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 and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it

the sum of the infinite series .

DEFINITION Given a series , let denote
its th partial sum:

If the sequence is convergent and exists as a real number,
then the series is called convergent and we write

The number is called the sum of the series. If the sequence is divergent,
then the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we
write we mean that by adding sufficiently many terms of the series we can
get as close as we like to the number . Notice that

EXAMPLE 1 An important example of an infinite series is the geometric series

Each term is obtained from the preceding one by multiplying it by the common
ratio . (We have already considered the special case where and on
page 436.)

If , then . Since doesn’t
exist, the geometric series diverges in this case.

If , we have

and

Subtracting these equations, we get

sn � a1 � a2 � a3 � � � � � an � �
n

i�1
ai

�sn �
lim n l � sn � s

� an

��
n�1 an � a1 � a2 � a3 � � � � sn

n

sn � �
n

i�1
ai � a1 � a2 � � � � � an

�sn � lim n l � sn � s
� an

a1 � a2 � � � � � an � � � � � s or �
�

n�1
an � s

s �sn �

��
n�1 an � s

s

�
�

n�1
an � lim

n l �
�
n

i�1
ai

a � ar � ar 2 � ar 3 � � � � � arn�1 � � � � � �
�

n�1
arn�1 a � 0

r a � 1
2 r � 1

2

r � 1 sn � a � a � � � � � a � na l �� lim n l � sn

r � 1

sn � a � ar � ar 2 � � � � � ar n�1

rsn � ar � ar 2 � � � � � ar n�1 � ar n

2

sn � rsn � a � arn

sn �
a�1 � rn �

1 � r
3
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■ Compare with the improper integral

To find this integral we integrate from 1
to and then let . For a series, we
sum from 1 to and then let .n l �

t l �
n

t

y
�

1
f �x� dx � lim

t l �
y

t

1
f �x� dx
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 If , we know from (8.1.8) that as , so

Thus when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (8.1.8) and so, by Equation 3,

does not exist. Therefore the geometric series diverges in those cases. ■

We summarize the results of Example 1 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

EXAMPLE 2 Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since
, the series is convergent by and its sum is

■

EXAMPLE 3 Is the series convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form :

�1 � r � 1 rn l 0 n l �

lim
n l �

sn � lim
n l �

a�1 � rn �
1 � r

�
a

1 � r
�

a

1 � r
lim
n l �

rn �
a

1 � r

	 r 	 � 1 a��1 � r�
r 	 �1 r 
 1 �rn �

lim n l � sn

�
�

n�1
arn�1 � a � ar � ar 2 � � � �

	 r 	 � 1

�
�

n�1
arn�1 �

a

1 � r 	 r 	 � 1

	 r 	 � 1

5 �
10
3 �

20
9 �

40
27 � � � �

a � 5 r � �
2
3

	 r 	 � 2
3 � 1

5 �
10

3
�

20

9
�

40

27
� � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

FIGURE 2

0 n

s
n

20

3

4

V

�
�

n�1
22n31�n

arn�1

�
�

n�1
22n31�n � �

�

n�1
�22�n 3��n�1� � �

�

n�1

4n

3n�1 � �
�

n�1
4(4

3 )n�1

4
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n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn

■ What do we really mean when we 
say that the sum of the series in Exam-
ple 2 is ? Of course, we can’t literally
add an infinite number of terms, one by
one. But, according to Definition 2, the
total sum is the limit of the sequence 
of partial sums. So, by taking the sum
of sufficiently many terms, we can get
as close as we like to the number . 
The table shows the first ten partial
sums and the graph in Figure 2 shows
how the sequence of partial sums
approaches .3

3

3

sn

■ Another way to identify and is to
write out the first few terms:

4 �
16
3 �

64
9 � � � �

ra

■ Figure 1 provides a geometric demon-
stration of the result in Example 1. If
the triangles are constructed as shown
and is the sum of the series, then, by
similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s
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 We recognize this series as a geometric series with and . Since ,
the series diverges by . ■

EXAMPLE 4 Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

■

EXAMPLE 5 Find the sum of the series , where .

SOLUTION Notice that this series starts with and so the first term is .
(With series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges
and gives

■

EXAMPLE 6 Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a
convergent series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

(see Section 6.3). Thus we have

2.317 � 2.3171717

2.3171717. . . � 2.3 �
17

103 �
17

105 �
17

107 � � � �

a � 17�103 r � 1�102

2.317 � 2.3 �

17

103

1 �
1

102

� 2.3 �

17

1000

99

100

�
23

10
�

17

990
�

1147

495

�
�

n�0
xn � x � � 1

n � 0 x 0 � 1
x 0 � 1 x � 0

�
�

n�0
xn � 1 � x � x 2 � x 3 � x 4 � � � �

a � 1 r � x � r � � � x � � 1

�
�

n�0
xn �

1

1 � x

�
�

n�1

1

n�n � 1�

sn � �
n

i�1

1

i�i � 1�
�

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� � � � �

1

n�n � 1�

1

i�i � 1�
�

1

i
�

1

i � 1

V

5

4

r � 1r � 4
3a � 4

4

sn � �
n

i�1

1

i�i � 1�
� �

n

i�1
� 1

i
�

1

i � 1�
� �1 �

1

2� � � 1

2
�

1

3� � � 1

3
�

1

4� � � � � � � 1

n
�

1

n � 1�
� 1 �

1

n � 1
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Module 8.2 explores a series that
depends on an angle in a triangle and
enables you to see how rapidly the series 
converges when varies.�

�
TEC

■ Notice that the terms cancel in pairs. 
This is an example of a telescoping
sum: Because of all the cancellations,
the sum collapses (like a pirate’s col -
laps ing telescope) into just two terms.
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and so

Therefore the given series is convergent and

■

EXAMPLE 7 Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , 
, , and show that they become large.

Similarly, , , and in general

This shows that as and so is divergent. Therefore the harmonic
series diverges. ■

THEOREM If the series is convergent, then .

PROOF Let . Then . Since is conver-
gent, the sequence is convergent. Let . Since as

, we also have . Therefore

■

NOTE 1 With any series we associate two sequences: the sequence of its
partial sums and the sequence of its terms. If is convergent, then the limit of

lim
n l �

sn � lim
n l �


1 �
1

n � 1� � 1 � 0 � 1

�
�

n�1

1

n�n � 1�
� 1

�
�

n�1

1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

s2

s4 s8, s16 s32, . . .

s2 � 1 �
1
2

s4 � 1 �
1
2 � ( 1

3 �
1
4 ) 
 1 �

1
2 � ( 1

4 �
1
4 ) � 1 �

2
2

s8 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 �
1
6 �

1
7 �

1
8 )


 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 �
1
8 �

1
8 �

1
8 )

� 1 �
1
2 �

1
2 �

1
2 � 1 �

3
2

s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 � � � � �
1
8 ) � ( 1

9 � � � � �
1
16 )


 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

� 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

s32 
 1 �
5
2 s64 
 1 �

6
2

s2n 
 1 �
n

2

s2n l � n l � �sn �

�
�

n�1
an lim

n l �
an � 0

V

6

sn � a1 � a2 � � � � � an an � sn � sn�1 � an

�sn � lim n l � sn � s n � 1 l �
n l � lim n l � sn�1 � s

lim
n l �

an � lim
n l �

�sn � sn�1� � lim
n l �

sn � lim
n l �

sn�1 � s � s � 0

� an �sn �
�an � � an

■ Figure 3 illustrates Example 6 by
showing the graphs of the sequence 
of terms and the
sequence of partial sums. Notice
that and . See Exer -
cises 46 and 47 for two geometric inter-
pretations of Example 6.

sn l 1an l 0
�sn �

an � 1�[n�n � 1�]

FIGURE 3

0

1

�an�

n

�sn�

■ The method used in Example 7 for 
showing that the harmonic series
diverges is due to the French scholar
Nicole Oresme (1323–1382).
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 the sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the
sequence is 0.

| NOTE 2 The converse of Theorem 6 is not true in general. If , we
cannot conclude that is convergent. Observe that for the harmonic series
we have as , but we showed in Example 7 that is divergent.

TEST FOR DIVERGENCE If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not diver-
gent, then it is convergent, and so .

EXAMPLE 8 Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence. ■

NOTE 3 If we find that , we know that is divergent. If we find
that , we know nothing about the convergence or divergence of .
Remember the warning in Note 2: If , the series might converge or
it might diverge.

THEOREM If and are convergent series, then so are the series
(where is a constant), , and , and

(i) (ii) 

(iii)

These properties of convergent series follow from the corresponding Limit Laws
for Sequences in Section 8.1. For instance, here is how part (ii) of Theorem 8 is
proved:

Let

The nth partial sum for the series is

�an �

lim n l � an � 0
� an � 1�n

an � 1�n l 0 n l � � 1�n

lim
n l �

an lim
n l �

an � 0

�
�

n�1
an

lim n l � an � 0

�
�

n�1

n2

5n2 � 4

lim
n l �

an � lim
n l �

n2

5n2 � 4
� lim

n l �

1

5 � 4�n2 �
1

5
� 0

lim n l � an � 0 � an

lim n l � an � 0 � an

lim n l � an � 0 � an

� an � bn

� can c � �an � bn � � �an � bn �

�
�

n�1
can � c �

�

n�1
an �

�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

�
�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

sn � �
n

i�1
ai s � �

�

n�1
an tn � �

n

i�1
bi t � �

�

n�1
bn

� �an � bn �

un � �
n

i�1
�ai � bi�

s�sn �

7

8
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 and, using Equation 5.2.10, we have

Therefore is convergent and its sum is

■

EXAMPLE 9 Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 6 we found that

So, by Theorem 8, the given series is convergent and

■

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of
a series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known 
that the series converges, then the full series

is also convergent.

lim
n l �

un � lim
n l �

�
n

i�1
�ai � bi� � lim

n l �

�

n

i�1
ai � �

n

i�1
bi�

� lim
n l �

�
n

i�1
ai � lim

n l �
�
n

i�1
bi

� lim
n l �

sn � lim
n l �

tn � s � t

� �an � bn �

�
�

n�1
�an � bn � � s � t � �

�

n�1
an � �

�

n�1
bn

�
�

n�1

 3

n�n � 1�
�

1

2n�
� 1�2n a � 1

2 r � 1
2

�
�

n�1

1

2n �
1
2

1 �
1
2

� 1

�
�

n�1

1

n�n � 1�
� 1 

�
�

n�1

 3

n�n � 1�
�

1

2n� � 3 �
�

n�1

1

n�n � 1�
� �

�

n�1

1

2n � 3 � 1 � 1 � 4

�
�

n�4

n

n 3 � 1

�
�

n�1

n

n 3 � 1
�

1

2
�

2

9
�

3

28
� �

�

n�4

n

n 3 � 1

��
n�1 n��n 3 � 1�

��
n�N�1 an

�
�

n�1
an � �

N

n�1
an � �

�

n�N�1
an
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 8.2 EXERCISES

1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

3–6 ■ Calculate the first eight terms of the sequence of partial
sums correct to four decimal places. Does it appear that the
series is convergent or divergent?

3. 4.

5. 6.

7–12 ■ Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

7.

8.

9. 10.

11. 12.

13–24 ■ Determine whether the series is convergent or diver-
gent. If it is convergent, find its sum.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

��
n�1 an � 5

�
�

n�1

1

ln�n � 1��
�

n�1

1

n3

�
�

n�1

��1�n�1

n!�
�

n�1

n

1 � sn

10 � 2 � 0.4 � 0.08 � � � �

2 � 0.5 � 0.125 � 0.03125 � � � �

�
�

n�1

��3�n�1

4 n �
�

n�1

10 n

��9�n�1

�
�

n�0

� n

3 n�1 �
�

n�0

1

(s2 )n

�
�

n�1

3n

e n�1 �
�

k�1

k�k � 2�
�k � 3�2

�
�

n�1

n � 1

3n � 1 �
�

n�1

1 � 3 n

2 n

�
�

n�1

1 � 2n

3n �
�

n�1
cos 

1

n

�
�

n�1
��0.8�n�1 � �0.3�n�

�

n�1
s
n 2

�
�

k�1
�cos 1�k�

�

n�1
arctan n

1

3
�

1

6
�

1

9
�

1

12
�

1

15
� � � �

1

3
�

2

9
�

1

27
�

2

81
�

1

243
�

2

729
� � � �

25–28 ■ Determine whether the series is convergent or diver-
gent by expressing as a telescoping sum (as in Ex am ple 6). 
If it is convergent, find its sum.

25. 26.

27. 28.

29. Let 
(a) Do you think that or ?
(b) Sum a geometric series to find the value of .
(c) How many decimal representations does the number 1

have?
(d) Which numbers have more than one decimal 

representation?

30. A sequence of terms is defined by

Calculate .

31–34 ■ Express the number as a ratio of integers.

31. 32.

33.

34.

35–37 ■ Find the values of for which the series converges.
Find the sum of the series for those values of .

35. 36.

37.

38. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

39. If the partial sum of a series is

find and .

�
�

n�2

2

n2 � 1 �
�

n�1
ln 

n

n � 1

�
�

n�1

3

n�n � 3�

sn

�
�

n�1
(e 1�n � e1��n�1�)

x � 0.99999 . . . .
x � 1 x � 1

x

a1 � 1 an � �5 � n�an�1

��
n�1 an

0.8 � 0.8888 . . . 0.46 � 0.46464646 . . .

2.516 � 2.516516516 . . .

10.135 � 10.135353535 . . .

x
x

�
�

n�1
��5�nx n �

�

n�0
��4�n�x � 5�n

�
�

n�0

�x � 2�n

3n

�
�

n�1
ln
1 �

1

n�

nth ��
n�1 an

sn �
n � 1

n � 1

an ��
n�1 an
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 45. Find the value of if .

; 46. Graph the curves , , for
on a common screen. By finding the areas between

successive curves, give a geometric demonstration of the
fact, shown in Example 6, that

47. The figure shows two circles and of radius 1 that touch
at . is a common tangent line; is the circle that
touches , , and ; is the circle that touches , , 
and ; is the circle that touches , , and . This 
procedure can be continued indefinitely and produces an
infinite sequence of circles . Find an expression for 
the diameter of and thus provide another geometric
demonstration of Example 6.

48. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicu-

lar to , , and this process is continued indefi -
nitely as shown in the figure. Find the total length of all the 
perpendiculars

in terms of and .

y � x n 0 	 x 	 1 n � 0, 1, 2, 3,
4, . . .

�
�

n�1

1

n�n � 1�
� 1 

C D
P T C1

C D T C2 C D
C1 C3 C D C2

�Cn �
Cn

1 1

P

C£

C™

C¡
D

T

C

ABC �A � � 	 AC 	 � b
CD AB DE

BC EF � AB

	 CD 	 � 	 DE 	 � 	 EF 	 � 	 FG 	 � � � �

b �

A

CEGB

F

H

D
¨

b

�
�

n�2
�1 � c��n � 2c40. If the partial sum of a series is , 

find and .

41. A patient takes 150 mg of a drug at the same time every
day. Just before each tablet is taken, 5% of the drug remains
in the body.
(a) What quantity of the drug is in the body after the third

tablet? After the th tablet?
(b) What quantity of the drug remains in the body in the

long run?

42. After injection of a dose of insulin, the concentration of
insulin in a patient’s system decays exponentially and so it
can be written as , where represents time in hours
and is a positive constant.
(a) If a dose is injected every hours, write an expres-

sion for the sum of the residual concentrations just
before the st injection.

(b) Determine the limiting pre-injection concentration.
(c) If the concentration of insulin must always remain at or

above a critical value , determine a minimal dosage
in terms of , , and .

43. When money is spent on goods and services, those who
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local gov-
ernment begins the process by spending dollars. Suppose
that each recipient of spent money spends and saves

of the money that he or she receives. The values
and s are called the marginal propensity to consume and the
marginal propensity to save and, of course, .
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number 

is called the multiplier. What is the multiplier if the 
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend-
 ing a large percentage of the money that they receive in
deposits.

44. A certain ball has the property that each time it falls from 
a height onto a hard, level surface, it rebounds to a height

, where . Suppose that the ball is dropped from
an initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels.
(b) Calculate the total time that the ball travels. (Use the 

fact that the ball falls in .)
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?

nth ��
n�1 an sn � 3 � n2�n

an ��
n�1 an

n

D

tDe�at

a
TD

�n � 1�

DC
TaC

D
100c%

c100s%

c � s � 1
Sn

Snn
k � 1�slimn l � Sn � kD

k
80%

h
0 � r � 1rh

H

t seconds1
2 tt 2 meters

�kvv
0 � k � 1
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