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Abstract. In this paper, we investigate the existence of multiple solutions for a class of hon-
homogeneous Kirchhoff type problems in Orlicz-Sobolev spaces. Our results are established by
using the mountain pass theorem combined with the Ekeland variational principle.
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1. INTRODUCTION

Let Q be an open bounded subset of

RY (N >3), with smooth boundary aq, 4
ov

is the outer unit normal derivative.
Assume that a: Q x R > R is such that the
mapping ¢: Q x R - R defined by

a(x,t)t, for t=0,

0, for =0,

p(xt)=

satisfies the condition H(p) : for all x € Q
, o(x,.) is an odd, strictly increasing
homeomorphism from R onto R.

In this work, we deal with the
following Kirchhoff type problems with
Neumann boundary condition
_M(L(u))[div(a(x,\Vu\)Vu)—a(x,\u\)u}:f(x,u)+g(x) in Q

%u: 0 on 4Q, @

where f:Q xR-R is a Carathéodory

function, g: Q > R is a perturbation term
and  M(t): R* = [0, +x) » R* is a
nondecreasing continuous function, and
the functional L defined by

L(u) I=.([(CD(X,‘VU‘)—O-(D(X,‘UD)C!X, )

where
D(x,t) = f0t<p(x, s)ds, Vx €, t > 0.

Problem (1) is a generalization of a
model introduced by Kirchhoff [16], who
studied the following equation

o’u ( p, E %leul’ o%u
— £+ —||=—| dx =0. (3
P o { h 2|_£ ox ox? )

Problem (3) extends the classical
D’Alembert’s  wave  equation by
considering the effects of the changes in the
length of the strings during the vibrations.
Latter, the study of Kirchhoff type
equations has already been extended to the
case involving the p-Laplacian

—M [J.|Vu|p deApu = f(x,u) InQ
Q

see [7, 13]. On the other hand, there is a
great number of papers which have dealt
with nonlocal p(x)-Laplacian equations, we
refer the reader to [3, 8, 18] and the
references therein for an overview on this
subject.

We point out the fact that if M(t) =
1, problem (1) becomes a nonlinear and
non-homogeneous problem, which has
been received considerable attention in
recent years and studied by some authors
in Orlicz-Sobolev spaces, see [1, 4, 5, 23]
for the advances and references of this
area. However, to our knowledge, there is
not a great number of papers which have
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dealt with nonlocal and non-homogeneous
equations through Orlicz-Sobolev spaces,
we quoted some interesting papers [6, 12,
14]. In [12], Figueiredo et al. studied the
existence of solutions for a class of
nonlocal and non-homogeneous equations
using Krasnoselskiis genus. In [14], the
authors considered problem (1) in the
special case when f(x,u) = Alu|9™®~2u. In
[6], the author studied the existence of
solutions for the problem using a
variational principle due to Ricceri [21].
Motivated by the contributions cited
above, in this paper we study the existence
of nontrivial solution for the nonlocal
problem (1) with perturbation g in Orlicz-
Sobolev spaces. Our proofs are essentially
based on the mountain pass theorem
combined with the Ekeland variational
principle.

2. THE FUNCTIONAL RAMEWORK

Here, we state some interesting
properties of the theory of Orlicz- Sobolev
spaces that will be useful to discuss
problem (1). To be more precise, for the
function @(x,t) which satisfies condition
H (¢), we assume that the function

Dd(x,t) = fot(p(x, s)ds, x€Q, t>0
belongs to class @ (see [20], p. 33), i.e.,
the function @ satisfies the following

conditions:
(@) forall xe o,.): [0,+x] > R is
a nondecreasing continuous function,
with @&(x,0) = 0 and &(x,t) > 0 whenever
t>0, tlirg¢(x, t) = +oo,
(D,) for every t>0, ®(,t):2->R is a
measurable function.

Since ¢(x,.) satisfies condition
H(¢), we deduce that ®(x,.) is convex
and increasing from R* - R*.

Now, for the function @ introduced
above, we define the generalized Orlicz
space

L“’(Q):{U:Qa* ,measurable; lim Jd)(x,lu(x))dx=0}
140*9

The space L®(Q) is a Banach space
endowed with the Luxemburg norm

_ , @)l
lulls = inf{x > 0; f, & (x, ") dx < 1
or the equivalent norm (the Orlicz norm)

uq):sup{ Ve LE(Q),ji(x,\v(x)\)dx sl},

where @ denotes the conjugate Young
function of @, that is, for each x € o and
t >0,

D(x,t) = sup{ts — ®(x,s); s € R}.

s>0

Furthermore, for ® and o conjugate

juvdx
Q

Young functions, Holder’s inequality
holds true

Iuvdx <C.|uf, -Mls » Yue L (), vve L® (),
Q

where C is a positive constant.
In this paper, we assume that there
exist two positive constants « and g
such that
to(x,t) —
a<——" < B<+o0, VXeQ, t>0. (4)
D(x,t)
The above relation implies that @®
satisfies the A,-condition, i.e

D(x,2t) <K.D(x,t), ¥xeQ, t=0, (5)

where K is a positive constant.
Furthermore, we assume that o

satisfies the following condition:

For each x < Q the function t — qp(x,ﬁ) is

convex on [0, +o). (6)
Relations (5) and (6) assure that
L*(©) is an uniformly convex space and
thus, a reflexive space.
Here, we give some relations
between the norm H, and the modular:
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Po(U) = J.CD(X, u(x)[)dx.

Proposition 2.1 ([19]). Assume that (4),
then the following relations hold:

Julf, < 2 W) <[ulf, )
for all uel®@ with |ul, >1,
July, < s (W) <l ®)

for all ue L (Q) with |uf, <1.

We denote by w**(Q) the

corresponding generalized Orlicz-Sobolev
space for problem (1), defined by

W (Q) = {UEL(D(Q) ~ Zel®Q), i=1.., N},

equipped with the equivalent norms

o = 70, +lul, - Jul, , = max{Jvull, Jul, )
el = inf{u > 0; [, [@ (x, lu(x)|) N
q)(x |Vu:x)|)]d < 1} )

More precisely, (see, e.g [19]) for
every u € Wh®(2) we have:

llull < 2llullz0 < 2llullye < 4llull.

The generalized Orlicz-Sobolev
space wW®(2) endowed with one of the
above norms is a reflexive Banach space.
In the following, we will use the norm ||. ||
on x:=wt*).

Proposition 2.2
following relations hold:

I[CD(X,\U(X)\)JrcD(x,\Vu(x)\)] dx 2 Jul”

forall ue X with |u|>1
I[d)(x, )+CD(x,
Q

forall ue X with |ul|<1.

Remark 2.3. Assuming that ® and
Y belong to class @ and there exists two
positives  constants  ki; k> and
n(x) e 1(Q), n(x)>0 a.e. ueQ such that
forall xe Q,t> 0,
Y(xt) < k®(x,ky.t) +n(x) =0, (10)

([29]). The

)J dx > [ul”

then there exists a continuous
embedding L*(Q) c L¥(Q2)  (see [20,
Theorem 8.5]). We point out that if (10)
holds with |Xr€13“2 d(x,1) >0, |Xr€1;‘2 Y(x,1) >0,
then w*® () is continuously embedded in
W (Q).

In this paper, we study the problem
(1) in the particular case when @ satisfies:

M.Jt*" < o(xt), ¥xeQ, t>0,
where M >0 is a positive constant algdl)
p(x)<C, ()
l<p = le;lg p(x)<p" = max p(x) < N.

the  function with

Here, ¢, (Q) = {h € C(Q):h(x) > 1,vx € Q}.
We define the variable exponent
Lebesgue space by

L"®(Q) = {u :Q — [, measuable: .Hu(x)\p(x) dx < +oo}
Q

This space endowed with the Luxemburg

norm,
p(x)
dx <1

||u||p =inf {r>0 J.

is a separable and reflexive Banach space.
Denoting by L°®(Q) the conjugate space
of LP® () where 1, 1
p()  p(x)
UeLP®(Q) and ve LP®(Q) we have the

following Holder type inequality

1 1
Jlotexs (Ll ol 12
Q

Now, we introduce the modular of the
Lebesgue-Sobolev space LP™(Q) as
mapping p,¢: LF(2) - R, defined by
Py U) = I|u|p(x) dx, Vue LP®(Q).
Q

u(x)

—1; for any

In the following proposition, we give
some relations between the Luxemburg
norm and the modular.
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Proposition 2.4  ([10]). f
u,u, e L’¥(Q), then following properties

hold true:

@)l <22l < 2oy @) <[l

@l , 1= lulfy, < oo @<l
(3) rl]m”un”p(x) = 0 = LL{Q pp(x) (un) = 01
(4) Lm||un||p(x) =t0 = !1!1‘]0 pp(x) (Un) = 400,

Next, we define the variable exponent
Sobolev space W™ () by

W Q) =fuelPP(Q): [Vule L"¥(Q)}.
endowed with the norm

[ulysoc oy =l + V01

The space W™ (Q) is separable and
reflexive.
Proposition 2.5 ([10]). For p,r eC+(§_2)

such that r(x) < p (x) (r(x)<p (x)) for

p(x) '

all xeQ, there is a continuous (compact)
embedding
WP (Q) < L7 (Q),

where
Np(x)
P (x)=1N-p(x)
+00 if p(x)>N.
Before stating our results, we make the
following assumptions on the functions
f(x,t) and M(t) as follows:
(m1) M(t) is a nondecreasing continuous
function, and there exists mo > 0 such that
M(t)>m, forallt > 0.
(m2) There exists ¢ € (8/q~, 1) such that
M(t)= oM (t)t, t>0,

if p(x)<N

where () = [M(s)ds, t>0.
0

(f) f(xt)= o(|t|"<”‘l) ast—0,

uniformly for xe Q.

(f,) f(xt)= o(|t|q(x)_l) as t — -+,

uniformly for x € Q, where q(x) €C, (5_2)
such that q(x) < p”(x).
(f;) there exists &>max{p,q'} such
that

OF (x,t):= 6 fot f(x,s)ds < tf(x,t)
vVt € Rand x € Q, where 8,0 aregivenin
(4) and assumption (m,) respectively.
(f,) inf  F(x,t)>0.

{xeq: t)=1}
We denote by J the energy functional
associated with problem (1), that is,
JO)=1()-H()
where I,H: X - R are defined as follows
I(w) = M(L(w),

Hw) = [, F(x,uw)dx + [, g()udx, (13)
where L defined by (2). Then, J €
Cl(X,R) and u € X is a weak solution of
(1) if and only if u is a critical point of J.
Moreover, we have

(J'(w),v) = M(L(w)) [,(alx, [Vu)Vuvv +
a(x, luDuv)dx — [, f(x,wvdx — [, g(x)vdx,
forall v € X.
We need the following lemma for the
proofs of our main results.
Lemma 2.6. If the condition (mi)

holds, then we have the following
assertions:
(1) 1 is sequentially weakly lower

semicontinuous and coercive;
(ii) 1': X — X" is strictly monotone;
(i) I" is of type (S+), ie. if u, = u
weakly in X, and
lim (1'(u,)—1'(u),u, ~u)=0,
then w,, = u strongly in X.
Proof. 0] Since
M) =M@)=m,>0, M is an
increasing function on R*. By using the
fact that the the functional L defined by


file:///C:/Users/Admin/AppData/Local/Temp/Rar$DIa14864.30907/Thành%20Chung.%20lan%20cuoi.docx%23page12
file:///C:/Users/Admin/AppData/Local/Temp/Rar$DIa14864.30907/Thành%20Chung.%20lan%20cuoi.docx%23page12
file:///C:/Users/Admin/AppData/Local/Temp/Rar$DIa14864.30907/Thành%20Chung.%20lan%20cuoi.docx%23page1
file:///C:/Users/Admin/AppData/Local/Temp/Rar$DIa14864.30907/Thành%20Chung.%20lan%20cuoi.docx%23page1

(2) is sequentially weakly lower
semicontinuous (see [19]), we see that | is
sequentially weakly lower
semicontinuous. Obviously, thanks to
Proposition 2.2 and (my), for each u e X
such that |u[ >1 we have
I(uw) = myL(u) = mg||ul|®. (14)
So, | is coercive.
(i) Consider the functional L, whose
Géteaux derivative at point ue X is
given by
<L'(u),v> = I(a(x, VU Vuvv+a(x,|uluv)dx,
Q
forall ve X .
Taking into account [15, Lemma 3.2], L
is strictly monotone. So, by [24,
Proposition 25.10], L is strictly convex.
Moreover, since M is nondecreasing, M is
convex in [0,+o0]. Thus, for every
u,ve X with u=v, and every s,t €(0,1)
with s+t =1, one has
M (L(su+tv)) < M (sL(u)+tL(v)) < SM (L(U)) +tM (L(v)).
From this, | is strictly convex, and, as
already said, that |  is strictly monotone.
(iii) From (ii), if u, ~uasn -»xin X
and llr+n (I'(up) = I'(w),u, —u) =0, We
obtain
nliToo(I’(un) —-I'(w),u, —u)=0,
we also have
nlirJrnoo(I’(un), u, —u) =0, (15)
which yields
tim ML) | @G 170 )Pt = )
n-+oo 0
+ a(x: |un|)un(un - u))dx
= 0.
Since u, — u in X, it follows that {|ju,||} is
bounded sequence of real number. From
the equivalent norms in relation (9), we
see that {llu,llo} and {lllvu,llle} are
bounded sequences of real numbers. Then,
Proposition 2.1 yields that the sequence

{L(u,)} is bounded, up to subsequence,
there is t, > 0 such that L(u,,) - t,. The fact
that M is continuous,
M(L(un)) - M(t,) = m, as n— +oo,
This and (16) imply
Lim [, (aCx, [Pun )Py ¥ (uy — 1) +
a(x, [unDun(up —u))dx = 0. (17)
In the same way,
nl—l;T-Iloo J,(aCx, [Vu)vuv (u, —w) +
a(x, |luDu(u, —w))dx = 0. (18)
Then, we obtain by using relations (17)
and (18) that

on(V) = [ (@l I7a D7ty
n
—alx, |Vu)vuw)V(u, — w)dx
+ [ @G uabiy
—a(x, [uDw) (u,
—u)dx. (19)
Using [17, Theorem 4] we obtain the

strong convergence of {u,} in X, which
ends the proof of (iii).

3. MAIN RESULTS AND PROOFS

Throughout the sequel and for
simplicity, we use ci (i = 1,2, ..), to denote
the general nonnegative or positive
constants. The first result of this paper can
be described as follows.

Theorem 3.1. Assume that (ma), (f1),
(f2) hold and suppose that q" <« . Then,

problem (1.1) has a weak solution,
provided that g € LP'® () and g # 0.
Proof. By conditions (f1)) and (f2), it
follows that for any &>0 there exists
¢, =c(&) >0 depending on & such that

F Lt <L tp(x) &tCI(x) 20
IF(x,0)] < S 6P + L5 1] (20)

forall (x,t) e Q xR
Together with (m,), and using Holder’s
inequality (12), we have
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3 =M , , d _€ P9I o
()2 W], (0] 9D + 000 u D))~ " o

> D(x,| Vu ) +D(x,|u]))dx— = pP d
2m, [ (O0x V) - @(cup)ae— [ b

C. e
—qugp| dx—c, gl o lull,, .

Hence, for ¢ sufficiently small, it follows

that

J() = 22 [ (D(x, Vul) + D, [ul))dx —
s_ffn|u|q(x)dx _

cillgllpreollullpe- (21)

By relation (11) and Remark 2.3 with

(x,t) =|t"”, we deduce that the space X

is continuously embedded in W*P® ().
On the other hand, Proposition 2.5
ensures that WP (Q) is compactly

embedded in L'®(Q). Thus, X & L9®(q)

is compact. Then, there exist a positive
constant cz such that
lullgee < collull, foralluex. (22)

Then, by Propositions 2.2 and 2.4 the
following hold

J@) = momax{|lull® lJull} 23)

— ce max{|[ull7”, ||u||q*8
— Callgllpr o llull > +oo,
as |lu]l » +oo Since q* < a. By Lemma 2.6
(1), itis easy to verify that J is weakly lower
semicontiguous. So J has a minimum point
(see [22, Theorem 1.2]), which is a weak
solution of problem (1).
Using the mountain pass theorem and
Ekeland’s variational principle, we obtain
the second main result.
Theorem 3.2. Assume that (my),

(m2), (f1) - (f2) hold and suppose that g <
g~ and gelP’®(), g=o0. Then there
exists a constant y > 0 such that problem
(1) admits at least two nontrivial different
solutions u,u € X satisfying J(w) < 0 < J(@)
provided that ||g|l,, <.

We first prove the following auxiliary
lemmas which will be used in the proof of
Theorem 3.2.

Lemma 3.3. Under the conditions
(my), (f) and (f2), there exist a,y, 0 > 0

such that j(w) > a for any uex, |u]=e

and for all g € LP"® () with [|gll,/y < v.
Proof. From relation (23), the following
hold

2(0) 2 mymax ] Jof'|

-emax ol |-culal o

el

ol oo ol X with o<1

[

ol ol =l =gl ). w € X with 1

Since p<q (we also have o <q"), there
exists o > 0 such that

max h(t) = h(e) > 0,

tell *

where

h(t) = mgtP~1 — 5t 1,
Then, taking y = h(0)/2c, We obtain that
J(w) = a = oh(p) for ||u]l = o and for all g €
LP' (@) With llgll,re <.
Lemma 3.4. Assume that conditions (my)
and (f3) hold. Then, there exists a
nonnegative function e e X with |le|]| > o
such that j(e) <0, where is given in
Lemma 3.3.
Proof. Let

k(r) =7 ’F(x,7t) - F(x,t), t>1.
We have
K (t)=t*(f(x,zt)rt —F(x,zt)) >0

for all z>1 by (f;). Hence, k(r) >k(1)
forall z>1, that is,

F(x,tt) = t9F (x,t) (24)
forall(x,t) e xRand 7 > 1.
Now, we show that

@ (x,1t) < TP D(%, 1), (25)
forallxen,t>0and > 1.
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Indeed, from (4) for T > 1 be fixed, we
have

ln(cb(x, Tt)) - ln(@(x, t))

Tt (p(x’ S) Ttﬂ

= i CD(x,s)dS < ) ;ds,
and it follows that relation (25) holds true.
By the same way, integrating (m2) we
obtain
M) < M(—i") = ct?/?, forall t > t, > 0. (26)

£
Now, leta functiony € ¢ (Q), ¥ =0, w 0
and F(x,y) > 0. For u € x\{0} and 7 >1, in
view of relations (24), (25) and (26), we
obtain

Jop) = M ( f (@Cx,7|Vy)) + cb(x,ﬂwm) dx
Q

—fF(x,rlp)dx—jg(x)n/)dx
Q Q

1/0
< ( fn (e, 7)) + <1><x,r|zp|))dx)
—7% [ F(x,¥)dx — 7 [, g(x)pdx
< 6?7 ([ (@ VYD) + (x, [P1)))
—7% [ F(x,)dx —7 [, g(x)pdx  (27)
since 1<p<pB/o<q <6, we deduce
that ](Tl//) —~ - as T - +o. SO Lemma
3.4 is proved by choosing e =, with
7, > 0 large enough such that |le|| > o.
Definition 3.5. We say that J
satisfises the Palais-Smale condition at
level c e R (briefly (PS)c ) on X, if any
sequence J{u,} c X, such that j(u,) - c and
J'(u,) >0 as possesses  a
convergent subsequence.
Lemma 3.6. Assume that conditions
(m1), (m2) and (f,) — (f;) hold. Then the
functional J satisfies the (PS). condition

with ¢ # 0.
Proof. Consider a sequence {u,} c X which
satisfies

Jw,) »¢>0,J (u,) »0asn—oo. (28)
Let us show that {u,} is bounded in X.
Assume  Jull>1 for convenience,

1/o

n — oo,

according to (my), (my), (), (4) and
Proposition 2.2, for n large enough, we
have

1
1+ Cy + ”un” 2](un) - EU’(un)' un)
> oM (f (@(x, |Vu,))
n
+ O, lunl) dx) f (@Cx, [P1un])
Q
+ d(x, |un|)) dx
1
—5M<L(<b(x, [V,
+ o, lul) dx) f (@, V1DV
Q

+ a(lu, Duf)dx
—f F(x,u,)dx
Q

+%jﬂf(x,un)undx— 7 Lg(x)undx

> oM (f (PCx, [Vun)
Q

+ o, |un|))dx> f (®Cx, 172y ])
Q
+ d(x, Iunl))dx

1
—§M<L(Cb(x,|l7un|)

o, |un|))dx> f (@ VDIV
Q

c,(6—-1)
0

+ @ (x, lupDun)dx — g1l oy llual

> oM <L(®(x, |Vu,])

+ @ (x, |un|))dx> f (@(x, [Vu,)
Q
+ d(x, |un|))dx

—'SM (L(Cb(x, |Vu,|)

+ c1>(|un|))dx> fﬂ (@Cx, 17y ])

+ @ (x, [uy|)) dx-celluyl
= mg(o — B/O)lunll® — cgllugll.
Taking into account o> g/q > /6, we
conclude that {u,} is bounded. For a
subsequence we can assume that u,, — @ in
X. Then (J'(u,),u,, — u) - 0, that is
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M(L () fﬂ (@, [V Ven¥ (uy — )
+ a(x, |lu,Du, (u, — u)dx

- [ £ G ~ W
Q

- f gx)(u, —u)dx - 0.
Q

From (f;) and (f3), using again Holder’s
inequality, it follows that

J-f(x, uy) (U, —u)dx - 0
and ’
fg(x)(un —u)dx - 0.
Therefore, gne has
ML) [ @G 7,710, 0 ty ~)

+a(x, [u, Du,(u, —u))dx - 0.

From Lemma 2.6 (iii), I' is of type (S,),
then u,, — u strongly.

Proof of Theorem 3.2. The proof is
divided into two steps:
Step 1: From Lemmas 3.3 and 3.4, by
mountain pass theorem due to Ambrosetti
and Rabinowitz [2], there exists a
sequence {u,} c X such that
J(u,) > ¢>0, J'(u,)—>0asn-oo. (29)
By Lemma 3.6, that there exists u € x such
that Jw) =¢>0,)J' ) =0,ie, u IS a
nontrivial weak solution of problem (1).
Step 2: For each (x,t) € Q x R, set h(r) =
F(x,t7t)7?, 1 € [1, +0). By condition (f3),

R'(7) = T971OF (x,t7't) — t7tf (2,77 1t)] < O,

so h(z) is nonincreasing. Thus, for any
[t| > 1 we have h(1) > h(|t]), that is,

F(x,t) = F(x, |t]7't)|t]® = aolt|®,
where ay = infieq =1y F (x,t) >0 by (f3).
From (f,), there exists § > 0 such that

If e Ot _ If (B <1

[t]p) T |g|pt0-1 T
for all x € @ and 0 < |t| < §. By condition
(f2), for all xeq and 6 <|t| <1, there

exists ¢y, > 0 such that

|f (x,t)e] c
[t|at) — ~10°-

Hence, for all xeQ and 0 < |t| <1, we
have

f Ot —[t) " —cpo [t

Using the equality F(x,t) = [} f(x, tt)dx, it
follows that

1 x x
F(x,t) > —— [t -0 "
p(x) a(x)
for all x e 2 and all 0 < |t| < 1. Therefore,

we deduce that

1 C10
F(x,t) = co|t|® — ——t|P® — |£]9¢0
o 1eS

forall xeQ andt € R.
From the fact that g e LP'® () and g # 0,
we can choose a function ¢ € X such that

fg(x)go(x)dx > 0.

Then, arising as (27) we obtain

(o) = ( f (@Cx, 7| VY] + <I>(x.rlwl)> dx
Q
—f F(x,n/))dx—fg(x)npdx
Q Q

1/0
< cgTP/7 <j (@(x, Vo) + P(x, |<P|))dx>
Q
—cg‘[ej l|®dx
Q
+c11‘rp_j|<p|”(x)dx +c12‘r"_J l@|P®dx
0 Q

—‘rjg(x)qadx <0,
Q

for = > 0 small enough since g~ > /0 and
6 > max{p~,q~} > 1. Thus, we obtain

—00 < ¢ = infEQ(O)] <0,
where o is given by Lemma 3.3 and
B,(0) c X denote the ball centered at the
origin and of radius p.
Now, let us choose € > 0 such that

e< inf J— inf J.
BBQ(O)] Bg(o)]

Applying Ekeland’s variational principle
to the functional j:B,(0) > R, if follows
that there exists u¢ € B,(0) such that
I(ue) <infg,q) (W) +¢
(ue) <J ) + ellu — ugll, vu € B,(0)\{uc}
By (30) and the fact that

(30)

(D
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J(ue) < infg, ) (W) + ¢
< b;;l(g)](u) +e< Bl;l(g)](u),
it follows that u, € B,(0). From these facts,
we have that u, is a local minimum of the
functional K(u) =J(u) + &||lu — uy,l|
defined from B,(0) onto R. Therefore, for
v € B,(0) and sufficiently small t > 0, we

have

0 < K(ue + tv) — K(ug)

t
_JQue + tv) — ] (ue)
t
Letting t — 07 it following that
J'(ue),v) + €llvll 2 0,

we infer that

' (o)l < e. (32)
From relations (31) and (32), there exists
a sequence {u,} c B,(0) such that

J@y) = ¢ J'(uy) = 0. (33)
In view of Lemma 3.6, {u,} is a bounded
sequence in X. Thus, there exists u € X
such that, up to a subsequence, {u,}
converges strongly to u and j(u)=c<
0, J'(w) =0, i.e., uis also anontrivial weak
solution for problem (1) such that u # u.
The proof of Theorem 3.2 is now
complete.
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SU TON TAI NGHIEM CHO MQT LOP PHUONG TRINH KHONG
THUAN NHAT VA KHONG PIA PHUONG TRONG KHONG GIAN
ORLICZ-SOBOLEV

Tém tit. Trong bai bao nay, ching t6i nghién cizu sir ton tai da nghiém cho mét I6p bai
toan khong thuan nhdt va khéng dia phwong trong khéng gian Orlicz-Sobolev. Cac két qud cuia
chang tdi ¢ ddy dwoc thiét |ap bang cach dimg dinh Ii qua ndi két hop véi nguyén li bién phan

Ekeland.

Tir khoa: Toan tir khéng thuan nhdt; Khong gian Orlicz-Sobolev; Bai toan

kiéu Kirchhoff type; Phwong phdp bién phan.

Lién he:
TS. Nguyén Thanh Chung

Bo mbn Toan, Khoa Khoa hoc Ty nhién, Pai hoc Quang Binh
312 Ly Thuong Kiét, thanh phé Bong Hai, tinh Quang Binh, Viét Nam.

Email: chungnt.univ@gmail.com






