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13 Vector Analysisand Vector Fields

13.1 Basic Notions of the Theory of Vector Fields

13.1.1 Vector Functions of a Scalar Variable

13.1.1.1 Definitions

1. Vector Function of a Scalar Variable ¢

A vector function of a scalar variable is a vector & whose components are real functions of #:
ad=a(t) = a,(t)€, + ay(t)€, + a.(t)€,.

The notions of limit, continuity, differentiability are defined componentwise for the vector a(t).

2. Hodograph of a Vector Function

(13.1)

If we consider the vector function a(t) as a position or radius vector ¥ = F(t) of a point P, then this
function describes a space curve while ¢ varies (Fig. 13.1). This space curve is called the hodograph of

the vector function &(t).
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13.1.1.2 Derivative of a Vector Function
The derivative of (13.1) with respect to ¢ is also a vector function of ¢:
da . a(t+ At) —a(t)  dag(t) da,(t) da,(t)
=1 = _‘z Y _‘1 _‘Z'
dt Ao At a & a0 a ©

(13.2)

dr
The geometric representation of the derivative dt of the radius vector is a vector pointing in the direc-

tion of the tangent of the hodograph at the point P (Fig. 13.2). Its length depends on the choice of
the parameter ¢. If ¢ is the time, then the vector £(¢) describes the motion of a point P in space (the

-

dr . . 1 . .
space curve is its path), and ' has the direction and magnitude of the velocity of this motion. If t = s

.

T
=1.

is the arclength of this space curve, measured from a certain point, then obviously ;
ds

13.1.1.3 Rules of Differentiation for Vectors

d . =, . di _db  dé

g EEPEC =4 £ E

d . dp, dd N .

dt (pd) = dta+ dt (¢ is a scalar function of t),
d - da- _db

at @)= g Py

(13.3a)
(13.3b)

(13.3¢)
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it (3 x b) gt = b +4ax dt (the factors must not be interchanged), (13.3d)

d da  dy

o dle] = d: . df (chain rule). (13.3¢)
a da

d
If |&(t)| = const, i.e., &%(t) = &(t) - &(t) = const, then it follows from (13.3c) that & - dz; =0,ie., dt

and & are perpendicular to each other. Examples of this fact:
B A: Radius and tangent vectors of a circle in the plane and
B B: position and tangent vectors of a curve on the sphere. Then the hodograph is a spherical curve.

13.1.1.4 Taylor Expansion for Vector Functions
da N h* d*a . htd"a
dt 2! df? n! dt"

The expansion of a vector function in a Taylor series makes sense only if it is convergent. Because the
limit is defined componentwise, the convergence can be checked componentwise, so the convergence
of this series with vector terms can be determined exactly by the same methods as the convergence of
a series with complex terms (see 14.3.2, p. 691). So the convergence of a series with vector terms is
reduced to the convergence of a series with scalar terms.
The differential of a vector function &(¢) is defined by:

da

a= At 13.5
da it t (13.5)

a(t+h) =a(t)+h (13.4)

13.1.2 Scalar Fields
13.1.2.1 Scalar Field or Scalar Point Function

If we assign a number (scalar value) U to every point P of a subset of space, then we write
U=U(P) (13.6a)
and we call (13.6a) a scalar field (or scalar function).
B Examples of scalar fields are temperature, density, potential, etc., of solids.
A scalar field U = U(P) can also be considered as
U=U({), (13.6b)
where T is the position vector of the point P with a given pole 0 (see 3.5.1.1, 6., p. 181).
13.1.2.2 Important Special Cases of Scalar Fields
1. Plane Field
We have a plane field, if the function is defined only for the points of a plane in space.

2. Central Field

If a function has the same value at all points P lying at the same distance from a fixed point C(t}), called
the center, then we call it a central symmetric field or also a central or spherical field. The function U
depends only on the distance CP = ||

U=f(r]). (13.7a)
B The field of the intensity of a point-like source, e.g., the field of brightness of a point-like source of
light at the pole, can be described with |F| = r as the distance from the light source:

U= (cconst). (13.7b)
T
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3. Axial Field

If the function U has the same value at all points lying at an equal distance from a certain straight line
(axis of the field) then the field is called cylindrically symmetric or an azially symmetric field, or briefly
an azial field.

13.1.2.3 Coordinate Definition of a Field

If the points of a subset of space are given by their coordinates, e.g., by Cartesian, cylindrical, or spher-
ical coordinates, then the corresponding scalar field (13.6a) is represented, in general, by a function of
three variables:

U=®(x,y,2), U=¥(pp,z) or U=x(rvp). (13.8a)
In the case of a plane field, a function with two variables is sufficient. It has the form in Cartesian and
polar coordinates:

U=d(z,y) or U="Y(p, o). (13.8b)
The functions in (13.8a) and (13.8b), in general, are assumed to be continuous, except, maybe, at some
points, curves or surfaces of discontinuity. The functions have the form
a) for a central field: U= U(\/ac2 +y2+2%) = U(\/p2 +22) =U(r), (13.9a)

b) for an axial field: U= U(\/x2 +y?) =U(p) = U(rsind). (13.9b)
Dealing with central fields is easiest using spherical coordinates, with axial fields using cylindrical co-
ordinates.

13.1.2.4 Level Surfaces and Level Lines of a Field

1. Level Surface
A level surface is the union of all points in space where the function (13.6a) has a constant value
U = const. (13.10a)

Different constants Uy, Uy, Us, . . . define different level surfaces. There is a level surface passing through
every point except the points where the function is not defined. The level surface equations in the three
coordinate systems used so far are:

U = &(z,y,z) = const, U ="¥(p,,z) = const, U = x(r,9,¢) = const. (13.10Db)
B Examples of level surfaces of different fields:

A: U =¢Cf=cv+cyy+c.2: Parallel planes.

B: U =2%+2y? + 4% Similar ellipsoids in similar positions.
C: Central field: Concentric spheres.
D: Axial field: Coaxial cylinders.

2. Level Lines
Level lines replace level surfaces in plane fields. They satisfy the equation

U = const. (13.11)
Level lines are usually drawn for equal intervals of U and each of them is marked by the corresponding
value of U (Fig. 13.3).
B Well-known examples are the isobaric lines on a synoptic map or the contour lines on topographic
maps.
In particular cases, level surfaces degenerate into points or lines, and level lines degenerate into separate
points.

B The level lines of the fieldsa) U = zy, b) U = v

1
= 2 U=r’d) U= ,are represented in Fig. 13.4.
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13.1.3 Vector Fields
13.1.3.1 VectOI:Field or Vector Point Function
If we assign a vector V to every point P of a subset of space, then we denote it by
vV =V(P) (13.12a)
and we call (13.12a) a vector field.

B Examples of vector fields are the velocity field of a fluid in motion, a field of force, and a magnetic
or electric intensity field.

A vector field V = V(P) can be regarded as a vector function
V = V(©), (13.12b)

where T is the position vector of the point P with a given pole 0. If all values of T as well as Vlicin a
plane, then the field is called a plane vector field (see 3.5.2, p. 189).

13.1.3.2 Important Cases of Vector Fields

1. Central Vector Field

In a central vector field all vectors V lie on straight lines passing through a fixed point called the center
(Fig. 13.5a).

If we locate the pole at the center, then the field is defined by the formula

V=f®r (13.13a)
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where all the vectors have the same direction as the radius vector r. It often has some advantage to
define the field by the formula

-

= r

V=), (13.13b)
where o(F) is the length of the vector V and f is a unit vector. N
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Figure 13.5
2. Spherical Vector Field

A spherical vector field is a special case of a central vector field, where the length of the vector \Y% depends
only on the distance || (Fig. 13.5b).

B Examples are the Newton and the Coulomb force field of a point-like mass or of a point-like electric
charge:

(¢ const) . (13.14)

The special case of a plane spherical vector field is called a circular field.

3. Cylindrical Vector Field

a) All vectors V lie on straight lines intersecting a certain line (called the azis) and perpendicular to
it, and

b) all vectors V at the points lying at the same distance from the axis have equal length, and they are
directed either toward the axis or away from it (Fig. 13.5c).

If we locate the pole on the axis parallel to the unit vector ¢, then the field has the form

—k

V= gp(/)); , (13.15a)

where r* is the projection of r on a plane perpendicular to the axis:
>k

" =¢x (rxd). (13.15Db)
By intersecting this field with planes perpendicular to the axis, we always get equal circular fields.
13.1.3.3 Coordinate Representation of Vector Fields

1. Vector Field in Cartesian Coordinates

The vector field (13.12a) can be defined by scalar fields V; (F), V2(f), and V() which are the coordinate
functions of \7, i.e., the coefficients of its decomposition into any three non-coplanar base vectors €},
€5, and €;:
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_,

V = Vi€ + V52€; + V3€;. (13.16a)
If we take the coordinate unit vectors f, I, and K as the base vectors and express the coefficients V1, V3,
V3 in Cartesian coordinates, then we get:

V= Ve(z,y, z)f+ Vy(z, v, z)j+ V(z,y, z)E (13.16b)
So, the vector field can be defined with the help of three scalar functions of three scalar variables.

2. Vector Field in Cylindrical and Spherical Coordinates
In cylindrical and spherical coordinates, the coordinate unit vectors

&, 8, & (=K), and & (=), &,8&, (13.17a)

are tangents to the coordinate lines at each point (Fig. 13.6, 13.7). In this order they always form a
right-handed system. The coefficients are expressed as functions of the corresponding coordinates:

V =V, (0,0, 2)8 + Vio(p, ¢, 2)80 + Valp, ¢, 2)&. , (13.17b)
V =V, (1,0, 0)8, + Vo(r, 9, 0)& + V(1. 0, )8, (13.17¢)

At transition from one point to the other, the coordinate unit vectors change their directions, but
remain mutually perpendicular.

z

Figure 13.6 Figure 13.7 Figure 13.8

13.1.3.4 Transformation of Coordinate Systems
See also Table 13.1.
1. Cartesian Coordinates in Terms of Cylindrical Coordinates

Ve =V,cosp -V, singp, Vy=V,sinp+V,cosp, V,=V.. (13.18)
2. Cylindrical Coordinates in Terms of Cartesian Coordinates

V, = Vycos g+ Vysingp, Vi, = —=Vasing + V cos g, V,=V.. (13.19)
3. Cartesian Coordinates in Terms of Spherical Coordinates

Vy = Visindcos g — V,sing + Vy cos p cos 9,

Vy, = Vesindsing + V,, cos ¢ + Vjy sin p cos 9,

V, = V. cost — Vysind. (13.20)
4. Spherical Coordinates in Terms of Cartesian Coordinates

V. = Vysind cos ¢ + V, sindsin p + V, cos v,

Vo = Vycoscos p + V, cos¥sinp — V, sin ), (13.21)




648  13. Vector Analysis and Vector Fields

Vo= — Visinp+ V, cos p.

5. Expression of a Spherical Vector Field in Cartesian Coordinates
A4 :ga(\/zz+y2+z2)(xf+ yj + 2K). (13.22)

6. Expression of a Cylindrical Vector Field in Cartesian Coordinates

V = g (/2 + ) (ai + 1)), (13.23)
In the case of a spherical vector field, spherical coordinates are most convenient for investigations,
i.e., the form V= V(r)€,; and for investigations in cylindrical fields, cylindrical coordinates are most
convenient, ie., the form V = V' (¢)€,. In the case of a plane field (Fig. 13.8), we have

V = Vol )i+ Vy (. 9)i = V(0. 0)8, + Vi (. )8, (13.24)
and for a circular field

.

V = p(y/a? + y2) (2 + 4§) = 0(p)8,. (13.25)

Table 13.1 Relations between the components of a vector in Cartesian, cylindrical, and spherical
coordinates

Cartesian coordinates Cylindrical coord. | Spherical coordinates

V=V, + V,€, + V.€, V€, + V€, +V.e. | V& + Vyéy+V,€,

Ve =V,cosp —V,sinp | =V, sind cos p + Vy cos v cos ¢
— Vysing

Vy =V,sinp+V,cosp | = V;sindsin g 4 Vycosdsin ¢
+ Vycosg

V, =V, =V, cosv — Vysind

Vi cos i+ Vysinp =V, =V, sind + Vycos ¥

—Vesing + V,cosp =V, =V,

V. =V, =V, cos — Vysind

Visind cos 4 Vysindsing + V, cost) | = V,sind + V,cosd | =V,

Vi cosdcos p+ Vy cosdsing — V. sind | = V,cos) — V,sind | =V}

—Vasingp + V, cos @ =V, =V,

13.1.3.5 Vector Lines

A curve C'is called a line of a vector or a vector line of the vector field
V(£) (Fig. 13.9) if the vector V (F) is a tangent vector of the curve
at every point P. There is a vector line passing through every point
of the field. Vector lines do not intersect each other, except, maybe,

at points where the function V is not defined, or where it is the zero
vector. The differential equations of the vector lines of a vector field Figure 13.9

_,
V given in Cartesian coordinates are
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dy d dv  d
Y= %% (13.26a) b) for a plane field: Vj = ‘71

a) in general: -
& SR VA VA ¥4

(13.26b)

To solve these differential equations see 9.1.1.2, p. 489 or 9.2.1.1, p. 517.
B A: The vector lines of a central field are rays starting at the center of the vector field.

B B: The vector lines of the vector field V = & x F are circles lying in planes perpendicular to the
vector €. Their centers are on the axis parallel to €.

13.2 Differential Operators of Space

13.2.1 Directional and Space Derivatives

13.2.1.1 Directional Derivative of a Scalar Field

The directional derivative of a scalar field U = U(F) at a point P with position vector T in the direction
¢ (Fig. 13.10) is defined as the limit of the quotient

oU :limb(r+5(i)_b(r).

o = lim - (13.27)

If the derivative of the field U = U (F) at a point ¥ in the direction of the unit vector €° of € is denoted

oU
by pars then the relation between the derivative of the function with respect to the vector ¢ and with
¢

respect to its unit vector ¢° at the same point is
ou E ou
oc oo’

o

¢ (13.28)

The derivative ggo with respect to the unit vector represents the speed of increase of the function U in
the direction of the vector ¢° at the point ¥. If ii is the normal unit vector to the level surface passing
through the point ¥, and 1 is pointing in the direction of increasing U, then (Z[:_lj has the greatest value
among all the derivatives at the point with respect to the unit vectors in different directions. Between

the directional derivatives with respect to i and with respect to any direction °, we have the relation

ou  oU U -0 ] - -

00 = ot o5 S8 =C" gradU (see (13.35), p. 651). (13.29)
In the following, directional derivatives always mean the directional derivative with respect to a unit
vector.

cos(€%,d) =

Figure 13.10 Figure 13.11
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13.2.1.2 Directional Derivative of a Vector Field
The directional derivative of a vector field is defined analogously to the directional derivative of a scalar

field. The directional derivative of the vector field V = \7(1_") at a point P with position vector r
(Fig. 13.11) with respect to the vector & is defined as the limit of the quotient
ov V(£ +ed) — V(F
V' i VEFEA) - VE) (13.30)
oa 0 €

If the derivative of the vector field V = \7(1“‘) at a point T in the direction of the unit vector &% of & is

.

denoted by ov then

0av’
v v
=1a . 13.31
In Cartesian coordinates, i.e., for V =V,&, + V,€, + V.€,, & = a,€, + a,€, + a.€,, we have:
6\7 = 7 = Vs 3 o e &
05 = (a-grad)V = (a-grad V,)ex + (8- grad V)€y, + (& - grad V.)e,. (13.32a)
In general coordinates we have:
v o
05 = (&-grad)V
1 . . - I
=, (rot (V x &) +grad (d- V) + ddivV — Vdivd —a x rot V — 'V x rot 4. (13.32b)

13.2.1.3 Volume Derivative
Volume derivatives of a scalar field U = U(F) or a vector field V at a point ¥ are quantities of three
forms, which are obtained as follows:
1. We surround the point r of the scalar field or of the vector field by a closed surface ¥. This surface can
be represented in parametric form ¥ = r'(u, v) = z(u, v)€, +y(u, v)€, + z(u, v)€,, so the corresponding
vectorial surface element is
or or

x dudv. 13.33a
ou Qv ( )
2. We evaluate the surface integral over the closed surface £. Here, the following three types of integrals
can be considered:

dS =

ﬁﬁ Uds, # V. dS, # V x dS. (13.33b)
) ) )
3. We determine the limits (if they exist)
I S TS B IS
lim | ﬁﬁ vds, Jim #V S, m # V x dS. (13.33c)
) 65 65)

Here V' denotes the volume of the region of space that contains the point with the position vector r
inside, and which is bounded by the considered closed surface 3.

The limits (13.33¢) are called volume derivatives. The gradient of a scalar field and the divergence and
the rotation of a vector field can be derived from them in the given order. In the following paragraphs,
we discuss these notions in details (we will even define them again.)

13.2.2 Gradient of a Scalar Field

The gradient of a scalar field can be defined in different ways.
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13.2.2.1 Definition of the Gradient

The gradient of a function U is a vector grad U, which can be assigned to every point of a scalar field
U = U(F), having the following properties:

1. The direction of grad U is always perpendicular to the direction of the level surface U = const,
passing through the considered point,

2. grad U is always in the direction in which the function U is increasing,

0
3. 1U| =
|grad U o’

i.e., the magnitude of grad U is equal to the directional derivative of U in the normal

direction.

If the gradient is defined in another way, e.g., as a volume derivative or by the differential operator,
then the previous defining properties became consequences of the definition.

13.2.2.2 Gradient and Volume Derivative

The gradient U of the scalar field U = U(F) at a point I’ can be defined as its volume derivative. If the
following limit exists, then we call it the gradient of U at 1

#Udﬁ

ad U = lim & .
gradU = ‘hglo (13.34)

%
Here V is the volume of the region of space containing the point belonging to ¥ inside and bounded by
the closed surface T. (If the independent variable is not a three-dimensional vector, then the gradient
is defined by the differential operator.)

13.2.2.3 Gradient and Directional Derivative

The directional derivative of the scalar field U with respect to the unit vector ¢ is equal to the projec-
tion of grad U onto the direction of the unit vector ¢°:
ou
0co
i.e., the directional derivative can be calculated as the dot product of the gradient and the unit vector
pointing into the required direction.

=¢&%. gradU, (13.35)

Remark: The directional derivative at certain points in certain directions may also exist if the gradient
does not exist there.

13.2.2.4 Further Properties of the Gradient

1. The absolute value of the gradient is greater if the level lines or level surfaces drawn as mentioned
in 13.1.2.4, 2., p. 644, are more dense.

2. The gradient is the zero vector (grad U = 0) if U has a maximum or minimum at the considered
point. The level lines or surfaces degenerate to a point there.

13.2.2.5 Gradient of the Scalar Field in Different Coordinates

1. Gradient in Cartesian Coordinates
0U(z,1,z);+ 8U(x,y,z)j~+ oU(z,y,2) -

dU = k. 13.
grad U P oy o (13.36)
2. Gradient in Cylindrical Coordinates (z = pcos ¢, y = p sin ¢, z = z)
gradU = grad, U€, + grad, U€, + grad, U€, with (13.37a)
oU 19U oUu
grad,U = grad, U = . grad,U = (13.37b)

ap’ pOp 0z
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3. Gradient in Spherical Coordinates (x = rsin 9cos ¢, y = rsin Isin ¢, z =
T cos 9)

gradU = grad, U€, + grad, U€; + grad,U€, with (13.38a)
oU 10U 1 oU
rad, U = radyU = d,U = . 13.38b

grad, or’ grady r 09’ grady rsin1 g ( )
4. Gradient in General Orthogonal Coordinates (¢, 7, ¢)
IEE(€, Q) = (&, QT+ y(&m, O + 2(€, 1, QK, then we get

gradU = grad, U + grad, U€, + grad, U&;, where (13.39a)

19U 1 oU 1 oU
rad, U = d,U = ad U = . 13.39b
grad, U oF| € grad, U oF| oy grad U oF| ac (13.39b)
23 In ¢

13.2.2.6 Rules of Calculations
We assume in the followings that € and ¢ are constant.

gradc=0, grad (U, +U,) = grad U, 4 grad U, grad (cU) = cgrad U. (13.40)

d

grad (U, U,) = Urgrad U, + Usgrad Uy, grad p(U) = d(p,grad U. (13.41)

grad (\71 . \72) = (\71 - grad )\72 + (\72 - grad )\71 + \71 X rot \72 + \72 X 1Ot \71. (13.42)

grad (F- €) = ¢C. (13.43)
1. Differential of a Scalar Field as the Total Differential of the Function U

oUu oUu oUu
J=¢ . dr = T y 2. 13.44

dU = grad U - dr o dr + o dy + o dz (13.44)
2. Derivative of a Function U along a Space Curve 1(t)

d J dx Jd Jd

U 0Udz 09Udy 0Udz (13.45)

dt ~ v dt  Oydt 0z dt
3. Gradient of a Central Field

gradU(r) = U’ (r): (spherical field), (13.46a) gradr = : (field of unit vectors). (13.46b)

13.2.3 Vector Gradient

The relation (13.32a) inspires the notation
v
oa

where grad V is called the vector gradient. Tt follows from the matrix notation of (13.47a) that the
vector gradient, as a tensor, can be represented by a matrix:

r

=& grad (V,8, + V,&, + V.&.) =& grad V (13.47a)

av, av, v, av, av, v,
ox Oy 0z dr Oy 0z
.oy, av, av, | (% o _ | 9V, 9V, 9V,
a-grad )V = Y Y Y 13.47b adV = Y Y V1. (13.47
(& grad) ox 9y 0z (?) ! : o or oy 0: @134
av, oV, oV, ov, ov, oV,

ox Oy 0z ox Oy 0z
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These types of tensors have a very important role in engineering sciences, e.g., for the description of
tension and elasticity (see 4.3.2, 4., p. 263, and p. 263).

13.2.4 Divergence of Vector Fields
13.2.4.1 Definition of Divergence

We can assign a scalar field to a vector field V(F) which is called its divergence. The divergence is
defined as a space derivative of the vector field at a point 1

#\7-(3

coxNF s ()
divV = ‘I}EB v . (13.48)

If the vector field V is considered as a stream field, then the divergence can be considered as the fluid
output or source, because it gives the amount of fluid given in a unit of volume during a unit of time

flowing by the considered point of the vector field V. In the case divV > 0 the point is called a source,
in the case div V < 0 it is called a sink.

13.2.4.2 Divergence in Different Coordinates
1. Divergence in Cartesian Coordinates

v, IV, ., - - -
vy (13.49a) with  V(z,y,2) = V,i+V,j+ Vk. (13.49Db)

o 0V
divV = _"+ ay 95

ox

The scalar field div V can be represented as the dot product of the nabla operator and the vector V as
divV=vV.-V (13.49¢)
and it is translation and rotation invariant, i.e., scalar invariant (see 4.3.3.2, p. 265).
2. Divergence in Cylindrical Coordinates
10(pV, 10V, 0V,
_ (p p) + ¢

divV
o p Op p Oy 0z

(13.50a) with V(p,p,2) = V,&, + V,&, + V.&.. (13.50D)

3. Divergence in Spherical Coordinates
1.9(r?V;) N 1 9(sindVy) 1 9V,
2 or rsind 0V rsind dp

with  V(r,9, @) = V,&, + Vo€ + V,,&,.

divV =

4. Divergence in General Orthogonal Coordinates

o 1 (o (lor||oF]. .\ . o (|oF||oF|..\ | @ (|oF||oF].. )
d1\rV*D{a§(877 ac "5)4_877(8( o€ ‘n)+a<(a€‘ n Lg)} (13.52a)
with (€,1,¢) = z(&,, ()f-ﬁ- y(&, n,()j-ﬁ- z(&,m, ()E; (13.52b)

ot or or or| |or| |or )
Df‘(ﬁff?wc) “log| on| lac) (13.52c)
and  V(&,1,C) = Vel + V€, + Veée. (13.524)

13.2.4.3 Rules for Evaluation of the Divergence
divé=0, div(V,+V,) =divVy+divV,, div(cV) = cdivV. (13.53)
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div(UV) =UdivV + V- gradU (especially div(rc) =

div (Vy x V) =V, 1ot Vi — Vi -rot V. (13.55)
13.2.4.4 Divergence of a Central Field
dive =3, dive(r)F = 3p(r) + re (r). (13.56)

13.2.5 Rotation of Vector Fields
13.2.5.1 Definitions of the Rotation
1. Definition . . .
The rotation or curl of a vector field V at the point T is a vector denoted by rot V, curl V or with the
nabla operator V x \7, and defined as the negative space derivative of the vector field:

ﬁs V x dS # dS x V
(©) _ o (0

rotV=— ‘1’13}) v = lim, v

(13.57)
2. Definition .
The vector field of the rotation of the vector field V(F) can be defined in the following way:

a) We put a small surface sheet S (Fig. 13.12)
through the point ¥. We describe this surface

sheet by a vector S whose direction is the di-

Vdr rection of the surface normal @i and its absolute
Proj, rot V=lim © value is equal to the area of this surface patch.
——————— " s»0 S The boundary of this surface is denoted by C.
ot b) We evaluate the integral 7{ V - df along the
(©)

closed boundary curve C of the surface (the sense
of the curve is positive looking to the surface
from the direction of the surface normal (see
Fig. 13.12).

0 c) We find the limit (if it exists) lim | ff V- dF,
5—0
[(e)]
Fioure 13.12 while the position of the surface sheet remains
& ’ unchanged.

d) We change the position of the surface sheet in order to get a maximum value of the limit. The surface
area in this position is Syax and the corresponding boundary curve is Ciyax-

e) We determine the vector rot T at the point ¥, whose absolute value is equal to the maximum value
found above and its direction coincides with the direction of the surface normal of the corresponding
surface. We then get:

V. dr

~; . Crnax
‘rotV‘ = lim (@
Smax—0 Smax

(13.58a)

The projection of rot V onto the surface normal 1 of a surface with area S, i.e., the component of the

~, -
vector rot 'V in an arbitrary direction i = 1 is
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V.dr
I 1otV =rot, V = lim” (13.58b)
S50 S :
The vector lines of the field rot V are called the curl lines of the vector field V.
13.2.5.2 Rotation in Different Coordinates
1. Rotation in Cartesian Coordinates
i j K
- L(0V, 0V, ~(0V, 0V, - (0V, OV, a 0 0 _
tV = -7 - k{,V- = . 13.59
o 1(81/ az)+‘]<8z 0I)+ <0w 83/) Ox Oy 0z (13.5%)
Vo V, V2

The vector field rot V can be represented as the cross product of the nabla operator and the vector vV

rot V=V xV. (13.59b)
2. Rotation in Cylindrical Coordinates
rot V = rot ,V&, + rot ,V&, +rot , V&,  with (13.60a)
- 190V, 0V, - d0V, 0V, - 1[0 av,
t,V = -7, t, V= _°-""7° t, V= V) — b 13.60t
ot pOp 0z e 0z op’ rob p {3/) (V) Oy ( )
3. Rotation in Spherical Coordinates
rot V = rot r\_}é’r + rot 19\7619 + rot H;\_/"é}p with (13.61a)
. 1 (8, . .. 8V
rot, V = roind {aﬂ(smzﬂw) = oy } ,

- 1 90V, 10 .
roty V= rsing dp 1 87'(, o),

5 1[0, Vi
rot, V = r{ar(”ﬂ)_aﬂ}'

(13.61b)

4. Rotation in General Orthogonal Coordinates
rot V = rot ¢ V& +rot,, V&, + rot V&  with (13.62a)

¥ = o o (€)= (o )]
rot,, V = ]; gf]‘ [;C ( gz vg) - ;f (gz Vcﬂ , (13.62b)
o = b o o (anl*9) = 2n (159
fl61.0) = el T e OF + sten 0 o= |0 |8 107 (1620

13.2.5.3 Rules for Evaluating the Rotation
rot (Vi + Va) = rot Vi + 10t Va, 1ot (¢V) = crot V. (13.63)
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rot (UV) = Urot V + grad U x V. (13.64)
Tot (\71 X Vz) = (\72 - grad )\71 — (\71 - grad )Vz + \71 div V2 — \72 div V‘1. (1365)

13.2.5.4 Rotation of a Potential Field
This also follows from the Stokes theorem (see 13.3.3.2, p. 666) that the rotation of a potential field is
identically zero:

rot V = rot (grad U) = 0. (13.66)
This also follows from (13.59a) for V= grad U, if the assumptions of the Schwarz interchanging theo-
rem are fulfilled (see 6.2.2.2, 1., p. 395).
B For ¥ = zi + yj + 2K with r = |F| = /22 + 42 + 22 we have: rot ¥ = 0 and rot (¢(r)F) = 0, where
©(r) is a differentiable function of .

13.2.6 Nabla Operator, Laplace Operator
13.2.6.1 Nabla Operator

The symbolic vector V is called the nabla operator. Its use simplifies the representation of and calcu-
lations with space differential operators. In Cartesian coordinates we have:
0y 0z 0>
V=_1i+_j+ ., k 13.67
ox 3y‘] 0z ( )
The components of the nabla operator are considered as partial differential operators, i.e., the symbol
means partial differentiation with respect to z, where the other variables are considered as con-

ox

stants.
The formulas for spatial differential operatorsin Cartesian coordinates can be obtained by formal mul-

tiplication of this vector operator by the scalar U or by the vector V. For instance, in the case of the
operators gradient, vector gradient, divergence, and rotation:

grad U =VU (gradient of U (see 13.2.2, p. 650)), (13.68a)
grad V=vV (vector gradient of V. (see 13.2.3, p. 652)), (13.68b)
divV =V -V  (divergence of V (see 13.2.4, p. 653)), (13.68c)
rot V.=V x V (rotation or curl of V. (see 13.2.5, p. 654)). (13.68d)

13.2.6.2 Rules for Calculations with the Nabla Operator

1. If V stands in front of a linear combination 3" a; X; with constants a; and with point functions X;,
then, independently of whether they are scalar or vector functions, we have the formula:

2. If V is applied to a product of scalar or vector functions, then we apply it to each of these functions

after each other and add the result. There is a | above the symbol of the function submitted to the

operation 1 1 !

VIXYZ)=V(XYZ)+ V(XY Z)+ V(XY Z), ie, (13.70)
VIXYZ)=(VX)YZ+X(VY)Z)+ XY (VZ).

We transform the products according to vector algebra so as the operator V is applied to only one factor

with the sign |. Having performed the computation we omit that sign.
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— _

; | Lo ) )
B A: div(UV)=V(UV)=V(UV)+VUV) =V -VU+UV-V =V -gradU + Udiv V.
4 4

P — —

B B: grad (V,V,) = V(V,V,) = V(V, V) + V(V, V, ). Because b(a¢) =
get: grad (V1Vy) = (VoV) Vi + Vo X (V x Vi) + (V1 V)V + V) X (V x Vy)
= (VQgrad)\?l +V,y x rotVy + (Vlgrad )\72 +V, x rot V.
13.2.6.3 Vector Gradient
The vector gradient grad\? is represented by the nabla operator as

gradV = VV, (13.71a)
We get for the expression occurring in the vector gradient (& - V)V:

2(&- V)V =rot (V x &) + grad (V) + adivV — Vdiva — @ x rot V. — V x rotd.  (13.71b)
In particular we get for ¥ = 21+ y_f+ Zk:

(a8-v)r=a4a. (13.71c)

13.2.6.4 Nabla Operator Applied Twice
For every field V:
V(V x V) = divrot V =0, (13.72a) V x (VU) = rot grad U = 0, (13.72b)

V(VU) = divgradU = AU. (13.72¢)

13.2.6.5 Laplace Operator

1. Definition
The dot product of the nabla operator with itself is called the Laplace operator:

A=V.-V=V~. (13.73)
The Laplace operator is not a vector. It prescribes the summation of the second partial derivatives. It
can be applied to scalar functions as well as to vector functions. The application to a vector function,
componentwise, results in a vector.
The Laplace operator is an invariant, i.e., it does not change during translation and/or rotation of the
coordinate system.
2. Formulas for the Laplace Operator in Different Coordinates
In the following, we apply the Laplace operator to the scalar point function U(F). Then the result is a

scalar. The application of it for vector functions \7(?) results in a vector AV with components AV,
AV, AV,.
1. Laplace Operator in Cartesian Coordinates

QU U | U

ATT — y
AU (z,y, z) o T o2 T o (13.74)
2. Laplace Operator in Cylindrical Coordinates
10 ( oU 10U 9*U
AU = . 13.75
(P, ¢, 2) pdp (P 3/)) 02 0p? + 922 ( 5)
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3. Laplace Operator in Spherical Coordinates

AU(r,9,¢) =

10
r?or

80 n 1 9 0 06U n
87" r?sin 90U i oY

4. Laplace Operator in General Orthogonal Coordinates

AU(E,m,¢) =

(&, n,¢) = 2(&,n, OF

19| D aU o D o
D |0¢ | |og|?0¢ | On||oF)on | O
06 on

+y(&m, QF + (6,1, Ok,

(13.77b)

1 0*U

r2sin? 0¢?

b ou ith
w1t
or|* o¢
¢
o |oF] |oF| |oF|
o¢| |on| |o¢

3. Special Relations between the Nabla Operator and Laplace Operator

+ OVa i
022

V(V-V) = graddiv V,
V x (V x V) = rotrot V,
V(V-V)=Vx(VxV)=AV,  where
AV = (V- V)V = AV,i + AV,j + AV.K = (%2;2 a;jz
N (021/;, LV 0%;,) iy (82 Vo V. 02x;) ©
0x? 0y? 022 Ox? oy? 022

13.2.7 Review of Spatial Differential Operations
13.2.7.1 Fundamental Relations and Results (see Table 13.2)

Table 13.2 Fundamental relations for spatial differential operators

Operator

Gradient

Vector gradient
Divergence
Rotation
Laplace operator
Laplace operator

Symbol | Relation | Argument | Result
grad U vU scalar vector
grad \Y% vV vector

divV vV vector scalar
rot V VxV vector vector
AU (V-V)U | scalar scalar
AV (V-V)V | vector vector

tensor second order

Meaning

curl

13.2.7.2 Rules of Calculation for Spatial Differential Operators

U, Uy, Us, scalar functions; ¢ constant; V, V1, V, vector functions:

grad (U; + Uy) = grad Uy + grad Us.
grad (cU) = cgrad U.

grad (U, 1)
grad F(U)

= U grad Uy + Uy grad Uy.
= F'(U) grad U.

source, sink

(13.76)

(13.77a)

(13.77¢)

(13.78)
(13.79)
(13.80)

(13.81)

maximal increase

potential field source
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div ( ) = divV, + div V.
div (¢V) = ediv V.

div (UV) =V - gradU + Udiv V.
rot ( Vi + V2) = 10t V; + rot V.
rot (¢V) = crot V.

rot (UV) = Urot V — V x grad U.
divrot V = 0.

rotgradU = ]
divgradU = AU.

rotrot V = grad div V- AV.
= \72 -rot \71 -

div (\71 X \72)

(zero vector).

\71 - rot \72.

13.2.7.3 Expressions of Vector Analysis in Cartesian, Cylindrical, and

Spherical Coordinates (see Table 13.3)

Table 13.3 Expressions of vector analysis in Cartesian, cylindrical, and spherical coordinates

Cartesian coordinates
&,dz + &,dy + €.dz

U 1 & oU i & oU
ox Y oy “ 0z
oV,
Ox oy 0z

&

rotv

o*U  0*U

AU oy?  02°

Cylindrical coordinates
€,dp + €,pdp + €,dz
g oUu ia 10U+é, ou
" op Yp g * 0z
10V, JV,
p Op 0z

10
pOp

g (1 ov. 8V¢>
"\ p op 0z
g v, oV,

( 0z dp )

10
+€, pV,) —
Face

10 (oU

pOp (p 3/’) "
QU

+ 022

(pV5) +

18‘/’,,)
p Op
1 0°U

p? op?

Spherical coordinates

€,dr + €yrdd + €,rsinddyp

g 0U+e 10U & 1 oU
or " Pr a9 " “Prsind 9y
10 19, .
r20r (r*V; )+7‘sin19019(wbm19)

1 ov,
rsind dp
L1 a ... . Vi
errsinﬁ[aﬂ(‘“‘“ﬂ) 099}
171 v, o, .
eﬂr [sinv dp B ar(r"“’)}
1[d av,
tee, {a (Vo) = aﬂ]
19 (,0U
,

r?or or

n 1 o [ . 196U
r2sing 99\ 9

1 9

72 sin? 9 02
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13.3 Integrationin Vector Fields

Integration in vector fields is usually performed in Cartesian, cylindrical or in spherical coordinate sys-
tems. Usually we integrate along curves, surfaces, or volumes. The line, surface, and volume elements
needed for these calculations are collected in Table 13.4.

Table 13.4 Line, surface, and volume elements in Cartesian, cylindrical, and spherical coordinates

Cartesian coordinates Cylindrical coordinates Spherical coordinates
dr | &,dx + €,dy + €.dz €,dp + €,pdp + €.,dz €,dr + &yrdd + €,rsinVdyp
dS &,dydz + €,dxdz + €.dzdy | &,pdpdz + &,dpdz + &, pdpdy | &.r?sinIdddyp

+&yrsin vdrdp
+€,rdrdd
dv* | dedydz pdpdpdz r2 sin 9drdddy

€, =€, XE, €, =€,Xx§€, €, =6y x &,

8, =6,%x§&, é,=¢€.%x8, €y =€, X €,

8, =8&,x§6, 6. =86,x6, €, =6, %x8&

i B P U R

The indices ¢ and j take the place of z,y, z or p, p, z or 7,9, .

The volume is denoted here by v to avoid confusion with the absolute value of the vector
function |V| = V.

13.3.1 LineIntegral and Potential in Vector Fields

13.3.1.1 Line Integral in Vector Fields

1. Definition The scalar-valued curvilinear integral or line integral of a vector function \7(1"’) along
a rectificable curve /TB (Fig. 13.13) is the scalar value

pP= / V(&) - df. (13.97a)
aB

2. Evaluation of this Integral in Five Steps

a) We divide the path AB (Fig. 13.13) by division points A; (), Aa(Ts), ..., Ap_1(Fao1) (A = Ay,
B = A,) into n small arcs which are approximated by the vectors ¥; — T;_y = AT;_;.

b) We choose arbitrarily the points P; with position vectors T; lying inside or at the boundary of each
small arc.

¢) We calculate the dot product of the value of the function V(F;) at these chosen points with the
corresponding AF; ;.

d) We add all the n products.

e) We calculate the limit of the sums got this way Z\?(f}) - AT, for Ar; ; — 0, whilen — oo
i=1
obviously.
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If this limit exists independently of the choice of the points A; and P;, then it is called the line integral

n—oo =1

/ V. di = AhrTDZV £) - AFi.. (13.97D)
AB

A sufficient condition for the existence of the line integral (13.97a,b) is that the vector function V (f)

—~

and the curve AB are continuous and the curve has a tangent varying continuously. A vector function

V(T) is continuous if its components, the three scalar functions, are continuous.

B=A,

Figure 13.13 Figure 13.14

13.3.1.2 Interpretation of the Line Integral in Mechanics

If V() is a field of force, i.e., V() = F(F), then the line integral (13.97a) represents the work done by
F while a particle m moves along the path .»ﬁ? (Fig. 13.13,13.14).

13.3.1.3 Properties of the Line Integral

/ V(&) - dif = /V(F)- & + /V(F)- dF. (13.98) .

ABC AB BC

V() - dif = — /\7(?)~ A (Fig. 13.14). (13.99)
aB BA
/[V(F)+W(F)] i = /\7(?)~ (1F+/W(F)~ dF. (13.100)
AB AB AB
/(:\7(1?‘)- dF = / V(&) - dr. (13.101)
AB AB

13.3.1.4 Line Integral in Cartesian Coordinates
In Cartesian coordinates, we have:

/ V() - dif = / (Vada + Vy dy + V. dz). (13.102)

AB



