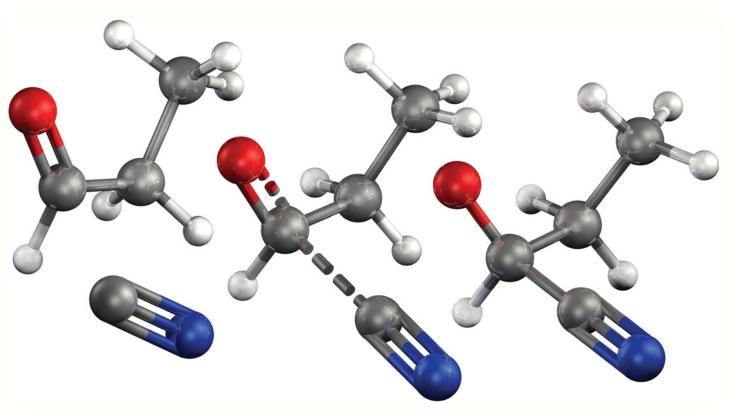

OXFORD

ORGANIC CHEMISTRY SECOND EDITION

Jonathan Clayden, Nick Greeves, and Stuart Warren


Organic Chemistry

Each chapter in this book is accompanied by a set of problems, which are available free of charge online. To access them visit the Online Resource Centre at www.oxfordtextbooks.co.uk/orc/clayden2e/ and enter the following:

Username: clayden2e Password: compound This page intentionally left blank

ORGANIC CHEMISTRY SECOND EDITION

Jonathan Clayden University of Manchester

Nick Greeves

University of Liverpool

Stuart Warren University of Cambridge

OXFORD UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford ox2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

> Published in the United States by Oxford University Press Inc., New York

© Jonathan Clayden, Nick Greeves, and Stuart Warren 2012

The moral rights of the authors have been asserted Crown Copyright material reproduced with the permission of the Controller, HMSO (under the terms of the Click Use licence.) Database right Oxford University Press (maker)

First published 2001

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer

> British Library Cataloguing in Publication Data Data available

Library of Congress Cataloging in Publication Data Library of Congress Control Number: 2011943531

Typeset by Techset Composition Ltd, Salisbury, UK Printed and bound in China by C&C Offset Printing Co. Ltd

ISBN 978-0-19-927029-3

10 9 8 7 6 5 4 3 2 1

Brief contents

Abbreviations xv Preface to the second edition xvii Organic chemistry and this book xix

- 1 What is organic chemistry? 1
- 2 Organic structures 15
- 3 Determining organic structures 43
- 4 Structure of molecules 80
- 5 Organic reactions 107
- 6 Nucleophilic addition to the carbonyl group 125
- 7 Delocalization and conjugation 141
- 8 Acidity, basicity, and pK_a 163
- 9 Using organometallic reagents to make C—C bonds 182
- 10 Nucleophilic substitution at the carbonyl group 197
- 11 Nucleophilic substitution at C=0 with loss of carbonyl oxygen 222
- 12 Equilibria, rates, and mechanisms 240
- 13 ¹H NMR: Proton nuclear magnetic resonance 269
- 14 Stereochemistry 302
- 15 Nucleophilic substitution at saturated carbon 328
- 16 Conformational analysis 360
- 17 Elimination reactions 382
- 18 Review of spectroscopic methods 407
- **19** Electrophilic addition to alkenes **427**
- 20 Formation and reactions of enols and enolates 449
- 21 Electrophilic aromatic substitution 471
- 22 Conjugate addition and nucleophilic aromatic substitution 498
- 23 Chemoselectivity and protecting groups 528
- 24 Regioselectivity 562
- 25 Alkylation of enolates 584
- 26 Reactions of enolates with carbonyl compounds: the aldol and Claisen reactions 614
- 27 Sulfur, silicon, and phosphorus in organic chemistry 656
- 28 Retrosynthetic analysis 694
- 29 Aromatic heterocycles 1: reactions 723
- 30 Aromatic heterocycles 2: synthesis 757
- 31 Saturated heterocycles and stereoelectronics 789
- 32 Stereoselectivity in cyclic molecules 825

BRIEF CONTENTS

- 33 Diastereoselectivity 852
- 34 Pericyclic reactions 1: cycloadditions 877
- 35 Pericyclic reactions 2: sigmatropic and electrocyclic reactions 909
- 36 Participation, rearrangement, and fragmentation 931
- 37 Radical reactions 970
- 38 Synthesis and reactions of carbenes 1003
- 39 Determining reaction mechanisms 1029
- 40 Organometallic chemistry 1069
- 41 Asymmetric synthesis 1102
- 42 Organic chemistry of life 1134
- 43 Organic chemistry today 1169

Figure acknowledgements 1182 Periodic table of the elements 1184 Index 1187

Contents

Abbre	eviations	xv
Prefac	ce to the second edition x	vii
Orgar	nic chemistry and this book	xix
1	What is organic chemistry?	1
	Organic chemistry and you	1
	Organic compounds	2
	Organic chemistry and industry	6
	Organic chemistry and the periodic table	11
	Organic chemistry and this book	13
	Further reading	13
2	Organic structures	15
	Hydrocarbon frameworks and functional groups	16
	Drawing molecules	17
	Hydrocarbon frameworks	22
	Functional groups	27
	Carbon atoms carrying functional groups can be	32
	classified by oxidation level	32 33
	Naming compounds What do chemists really call compounds?	36
	How should you name compounds?	40
	Further reading	42
	Determining ergenic structures	43
3	Determining organic structures	
	Introduction	43
	Mass spectrometry	46
	Mass spectrometry detects isotopes	48
	Atomic composition can be determined by high-resolution mass spectrometry	50
	Nuclear magnetic resonance	52
	Regions of the ¹³ C NMR spectrum	56
	Different ways of describing chemical shift	57
	A guided tour of the ¹³ C NMR spectra of some	
	simple molecules	57
	The ¹ H NMR spectrum	59
	Infrared spectra	63
	Mass spectra, NMR, and IR combined make quick identification possible	72
	Double bond equivalents help in the search for a structure	74
	Looking forward to Chapters 13 and 18	78
	Further reading	78

4	Structure of molecules	80
_	Introduction	80
	Electrons occupy atomic orbitals	83
	Molecular orbitals—diatomic molecules	88
	Bonds between different atoms	95
	Hybridization of atomic orbitals	99
	Rotation and rigidity	105
	Conclusion	106
	Looking forward	106
	Further reading	106
5	Organic reactions	107
	Chemical reactions	107
	Nucleophiles and electrophiles	111
	Curly arrows represent reaction mechanisms	116
	Drawing your own mechanisms with curly arrows	120
	Further reading	124
6	Nucleophilic addition to the carbonyl group	125
	Molecular orbitals explain the reactivity of the	
	carbonyl group	125
	Attack of cyanide on aldehydes and ketones	127
	The angle of nucleophilic attack on aldehydes and ketones	129
	Nucleophilic attack by 'hydride' on aldehydes	
	and ketones	130
	Addition of organometallic reagents to aldehydes and ketones	132
	Addition of water to aldehydes and ketones	132
	Hemiacetals from reaction of alcohols with aldehydes	177
	and ketones	135
	Ketones also form hemiacetals	137
	Acid and base catalysis of hemiacetal and	
	hydrate formation	137
	Bisulfite addition compounds	138
	Further reading	140
7	Delocalization and conjugation	141
	Introduction	141
	The structure of ethene (ethylene, $CH_2 = CH_2$)	142

Molecules with more than one C = C double bond

143

CONTENTS

The conjugation of two $oldsymbol{\pi}$ bonds	146
UV and visible spectra	148
The allyl system	150
Delocalization over three atoms is a common structural feature	154
Aromaticity	156
Further reading	162

8 Acidity, basicity, and pK_a

Organic compounds are more soluble in water as ions	163
Acids, bases, and pK_a	165
Acidity	165
The definition of pK_a	168
Constructing a pK_a scale	171
Nitrogen compounds as acids and bases	174
Substituents affect the pK_a	175
Carbon acids	176
pK_a in action—the development of the	
drug cimetidine	178
Lewis acids and bases	180
Further reading	181

9 Using organometallic reagents to make C-C bonds

Introduction	182
Organometallic compounds contain a carbon—metal bond	183
Making organometallics	184
Using organometallics to make organic molecules	189
Oxidation of alcohols	194
Looking forward	196
Further reading	196

10 Nucleophilic substitution at the carbonyl group

The product of nucleophilic addition to a carbonyl group is not always a stable compound	197
Carboxylic acid derivatives	198
Why are the tetrahedral intermediates unstable?	200
Not all carboxylic acid derivatives are equally reactive	205
Acid catalysts increase the reactivity of a carbonyl group	207
Acid chlorides can be made from carboxylic acids using $SOCl_2$ or PCl_5	214
Making other compounds by substitution reactions of acid derivatives	216
Making ketones from esters: the problem	216
Making ketones from esters: the solution	218
To summarize	220

	And to conclude	220
	Further reading	220
11	Nucleophilic substitution at C=0 with loss	
	of carbonyl oxygen	222
	Introduction	222
	Aldehydes can react with alcohols to form hemiacetals Acetals are formed from aldehydes or ketones plus	223
	alcohols in the presence of acid	224
	Amines react with carbonyl compounds	229
	Imines are the nitrogen analogues of carbonyl compounds	230
	Summary	230
	Further reading	230
	Tuttler reading	239
12	Equilibria, rates, and mechanisms	240
	How far and how fast?	240
	How to make the equilibrium favour the	
	product you want	244
	Entropy is important in determining equilibrium constants	246
	Equilibrium constants vary with temperature	240
	Introducing kinetics: how to make reactions go	210
	faster and cleaner	250
	Rate equations	257
	Catalysis in carbonyl substitution reactions	262
	Kinetic versus thermodynamic products	264
	Summary of mechanisms from Chapters 6–12	266
	Further reading	267
13	¹ H NMR: Proton nuclear magnetic	
	resonance	269
	The differences between carbon and proton NMR	269
	Integration tells us the number of hydrogen atoms	
	in each peak	270
	Regions of the proton NMR spectrum	272
	Protons on saturated carbon atoms	272
	The alkene region and the benzene region	277
	The aldehyde region: unsaturated carbon bonded to oxygen	281
	Protons on heteroatoms have more variable shifts	201
	than protons on carbon	282
	Coupling in the proton NMR spectrum	285
	To conclude	301
	Further reading	301
14	Stereochemistry	302
	Some compounds can exist as a pair of mirror-	
	image forms	302

viii

Diastereoisomers are stereoisomers that are	
not enantiomers	311
Chiral compounds with no stereogenic centres	319
Axes and centres of symmetry	320
Separating enantiomers is called resolution	322
Further reading	327

360

18

15 Nucleophilic substitution at saturated carbon

328 Mechanisms for nucleophilic substitution 328 How can we decide which mechanism ($S_N 1$ or $S_N 2$) will apply to a given organic compound? 332 A closer look at the S_N1 reaction 333 A closer look at the S_N^2 reaction 340 Contrasts between $S_N 1$ and $S_N 2$ 342 The leaving group in $S_N 1$ and $S_N 2$ reactions 347 The nucleophile in S_N1 reactions 352 The nucleophile in the $S_N 2$ reaction 353 Nucleophiles and leaving groups compared 357 Looking forward: elimination and 358 rearrangement reactions 359 Further reading

16 Conformational analysis

17

Bond rotation allows chains of atoms to adopt	
a number of conformations	360
Conformation and configuration	361
Barriers to rotation	362
Conformations of ethane	363
Conformations of propane	365
Conformations of butane	365
Ring strain	366
A closer look at cyclohexane	370
Substituted cyclohexanes	374
To conclude	381
Further reading	381
Elimination reactions	382

Substitution and elimination 382 How the nucleophile affects elimination versus substitution 384 E1 and E2 mechanisms 386 Substrate structure may allow E1 388 The role of the leaving group 390 E1 reactions can be stereoselective 391 E2 eliminations have anti-periplanar transition states 395 The regioselectivity of E2 eliminations 398

CONTENTS

Anion-stabilizing groups allow another mechanism—E1cB	399
To conclude	404
Further reading	406
Review of spectroscopic methods	407
There are three reasons for this chapter	407
Spectroscopy and carbonyl chemistry	408
Acid derivatives are best distinguished by infrared	411
Small rings introduce strain inside the ring and higher s character outside it	412
Simple calculations of C=O stretching frequencies in IR spectra	413
NMR spectra of alkynes and small rings	414
Proton NMR distinguishes axial and equatorial protons in cyclohexanes	415
Interactions between different nuclei can give enormous coupling constants	415
Identifying products spectroscopically	418
Tables	422
Shifts in proton NMR are easier to calculate and	

19	Electrophilic addition to alkenes	427
	Alkenes react with bromine	427
	Oxidation of alkenes to form epoxides	429
	Electrophilic addition to unsymmetrical alkenes is regioselective	433
	Electrophilic addition to dienes	435
	Unsymmetrical bromonium ions open regioselectively	436
	Electrophilic additions to alkenes can be stereospecific	439
	Adding two hydroxyl groups: dihydroxylation	442
	Breaking a double bond completely: periodate cleavage and ozonolysis	443
	Adding one hydroxyl group: how to add water across a double bond	444
	To concludea synopsis of electrophilic addition reactions	447
	Further reading	447

more informative than those in carbon NMR

Further reading

Formation and reactions of enols 20 and enolates 449 Would you accept a mixture of compounds as a pure substance? 449 Tautomerism: formation of enols by proton transfer 450 Why don't simple aldehydes and ketones exist 451 as enols?

ix

425

Evidence for the equilibration of carbonyl	
compounds with enols	451
Enolization is catalysed by acids and bases	452
The intermediate in the base-catalysed reaction	
is an enolate ion	452
Summary of types of enol and enolate	454
Stable enols	456
Consequences of enolization	459
Reaction with enols or enolates as intermediates	460
Stable equivalents of enolate ions	465
Enol and enolate reactions at oxygen: preparation	
of enol ethers	467
Reactions of enol ethers	468
To conclude	470
Further reading	470

21 Electrophilic aromatic substitution

Introduction: enols and phenols	471
Benzene and its reactions with electrophiles	473
Electrophilic substitution on phenols	479
A nitrogen lone pair activates even more strongly	482
Alkyl benzenes also react at the <i>ortho</i> and <i>para</i> positions	484
Electron-withdrawing substituents give meta products	486
Halogens show evidence of both electron withdrawal and donation	489
Two or more substituents may cooperate or compete	491
Some problems and some opportunities	492
A closer look at Friedel—Crafts chemistry	492
Exploiting the chemistry of the nitro group	494
Summary	495
Further reading	497

22 Conjugate addition and nucleophilic aromatic substitution

Alkenes conjugated with carbonyl groups	498
Conjugated alkenes can be electrophilic	499
Summary: factors controlling conjugate addition	509
Extending the reaction to other electron-	
deficient alkenes	510
Conjugate substitution reactions	511
Nucleophilic epoxidation	513
Nucleophilic aromatic substitution	514
The addition-elimination mechanism	515
The $S_N 1$ mechanism for nucleophilic aromatic	
substitution: diazonium compounds	520
The benzyne mechanism	523

	To conclude	526
	Further reading	527
23	Chemoselectivity and protecting groups	528
	Selectivity	528
	Reducing agents	530
	Reduction of carbonyl groups	530
	Hydrogen as a reducing agent: catalytic hydrogenation	534
	Getting rid of functional groups	539
	Dissolving metal reductions	541
	Selectivity in oxidation reactions	544
	Competing reactivity: choosing which group reacts	546
	A survey of protecting groups	549
	Further reading	561
24	Regioselectivity	562
1	Introduction	562
	Regioselectivity in electrophilic aromatic substitution	563
	Electrophilic attack on alkenes	570
	Regioselectivity in radical reactions	571
	Nucleophilic attack on allylic compounds	574
	Electrophilic attack on conjugated dienes	579
	Conjugate addition	581
	Regioselectivity in action	582
	Further reading	583
25	Further reading Alkylation of enolates	583 584
25	-	
25	Alkylation of enolates	584
25	Alkylation of enolates Carbonyl groups show diverse reactivity	584 584
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations	584 584 584
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated	584 584 584 585
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation	584 584 584 585 585
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes	584 584 585 587 587 588
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones	584 584 585 587 587 588 591
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β-dicarbonyl compounds	584 584 585 587 587 588 591 595
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β -dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity	584 584 585 587 587 588 591
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β -dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity Enones provide a solution to regioselectivity problems	584 584 585 587 587 588 591 595 598
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β -dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity	584 584 585 587 587 587 587 588 591 595 598 601
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β -dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity Enones provide a solution to regioselectivity problems Using Michael acceptors as electrophiles	584 584 585 585 587 587 588 591 595 598 601 605
	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β-dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity Enones provide a solution to regioselectivity problems Using Michael acceptors as electrophiles To conclude Further reading	584 584 585 587 587 588 591 595 598 601 605 612
25	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β -dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity Enones provide a solution to regioselectivity problems Using Michael acceptors as electrophiles To conclude	584 584 585 587 587 588 591 595 598 601 605 612 613
	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β-dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity Enones provide a solution to regioselectivity problems Using Michael acceptors as electrophiles To conclude Further reading Reactions of enolates with carbonyl	584 584 585 587 587 588 591 595 598 601 605 612 613
	Alkylation of enolates Carbonyl groups show diverse reactivity Some important considerations that affect all alkylations Nitriles and nitroalkanes can be alkylated Choice of electrophile for alkylation Lithium enolates of carbonyl compounds Alkylations of lithium enolates Using specific enol equivalents to alkylate aldehydes and ketones Alkylation of β-dicarbonyl compounds Ketone alkylation poses a problem in regioselectivity Enones provide a solution to regioselectivity problems Using Michael acceptors as electrophiles To conclude Further reading Reactions of enolates with carbonyl compounds: the aldol and Claisen reactions	584 584 585 587 587 588 591 595 598 601 605 612 613 614

CONTENTS

Specific enol equivalents can be used to control aldol reactions	624
How to control aldol reactions of esters	631
How to control aldol reactions of aldehydes	632
How to control aldol reactions of ketones	634
Intramolecular aldol reactions	636
Acylation at carbon	640
Crossed ester condensations	643
Summary of the preparation of keto-esters	
by the Claisen reaction	647
Controlling acylation with specific enol equivalents	648
Intramolecular crossed Claisen ester condensations	652
Carbonyl chemistry—where next?	654
Further reading	654

27 Sulfur, silicon, and phosphorus in organic chemistry

Useful main group elements	656
Sulfur: an element of contradictions	656
Sulfur-stabilized anions	660
Sulfonium salts	664
Sulfonium ylids	665
Silicon and carbon compared	668
Allyl silanes as nucleophiles	675
The selective synthesis of alkenes	677
The properties of alkenes depend on their geometry	677
Exploiting cyclic compounds	678
Equilibration of alkenes	679
<i>E</i> and <i>Z</i> alkenes can be made by stereoselective	681
addition to alkynes Bradominanthy E alkones can be formed by	081
Predominantly <i>E</i> alkenes can be formed by stereoselective elimination reactions	684
The Julia olefination is regiospecific and connective	686
Stereospecific eliminations can give pure single isomers of alkenes	688
Perhaps the most important way of making	
alkenes—the Wittig reaction	689
To conclude	693
Further reading	693
Retrosynthetic analysis	694
Creative chemistry	694
Retrosynthetic analysis: synthesis backwards	694
Disconnections must correspond to known,	

reliable reactions
Synthons are idealized reagents
Multiple step syntheses: avoid chemoselectivity problems

	Functional group interconversion	699
	Two-group disconnections are better than one-group disconnections	702
	C–C disconnections	706
	Available starting materials	711
	Donor and acceptor synthons	712
	Two-group C—C disconnections	712
	1,5-Related functional groups	719
	'Natural reactivity' and 'umpolung'	719
	To conclude	722
	Further reading	722
29	Aromatic heterocycles 1: reactions	723
	Introduction	723
	Aromaticity survives when parts of benzene's ring are replaced by nitrogen atoms	724
	Pyridine is a very unreactive aromatic imine	725
	Six-membered aromatic heterocycles can have oxygen in the ring	732
	Five-membered aromatic heterocycles are good at electrophilic substitution	733
	Furan and thiophene are oxygen and sulfur analogues of pyrrole	735
	More reactions of five-membered heterocycles	738
	Five-membered rings with two or more nitrogen atoms	740
	Benzo-fused heterocycles	745
	Putting more nitrogen atoms in a six-membered ring	748
	Fusing rings to pyridines: quinolines and isoquinolines	749

Aromatic heterocycles can have many nitrogens	
but only one sulfur or oxygen in any ring	751
There are thousands more heterocycles out there	753
Which heterocyclic structures should you learn?	754
Further reading	755

30	Aromatic heterocycles 2: synthesis	757
	Thermodynamics is on our side	758
	Disconnect the carbon—heteroatom bonds first	758
	Pyrroles, thiophenes, and furans from 1,4-dicarbonyl compounds	760
	How to make pyridines: the Hantzsch pyridine synthesis	763
	Pyrazoles and pyridazines from hydrazine and dicarbonyl compounds	767
	Pyrimidines can be made from 1,3-dicarbonyl compounds and amidines	770
	Unsymmetrical nucleophiles lead to selectivity questions	771
	Isoxazoles are made from hydroxylamine or by cycloaddition	772
	Tetrazoles and triazoles are also made by cycloadditions	774
	The Fischer indole synthesis	775

Quinolines and isoquinolines	780
More heteroatoms in fused rings mean more choice in synthesis	784
Summary: the three major approaches to the synthesis of aromatic heterocycles	785
Further reading	788

31 Saturated heterocycles and stereoelectronics

Introduction	789
Reactions of saturated heterocycles	790
Conformation of saturated heterocycles	796
Making heterocycles: ring-closing reactions	805
Ring size and NMR	814
Geminal (² J) coupling	817
Diastereotopic groups	820
To summarize	824
Further reading	824

32 Stereoselectivity in cyclic molecules

Introduction	825
Stereochemical control in six-membered rings	826
Reactions on small rings	832
Regiochemical control in cyclohexene epoxides	836
Stereoselectivity in bicyclic compounds	839
Fused bicyclic compounds	841
Spirocyclic compounds	846
Reactions with cyclic intermediates or cyclic	
transition states	847
To summarize	851
Further reading	851
Diastereoselectivity	852

Looking back	852
Prochirality	856
Additions to carbonyl groups can be diastereoselective even without rings	858
Stereoselective reactions of acyclic alkenes	865
Aldol reactions can be stereoselective	868
Single enantiomers from diastereoselective reactions	871
Looking forward	876
Further reading	876
Pericyclic reactions 1: cycloadditions	877
A new sort of reaction	877
General description of the Diels-Alder reaction	879
The frontier orbital description of cycloadditions	886

Regioselectivity in Diels-Alder reactions

	The Woodward–Hoffmann description of the Diels–Alder reaction	892
	Trapping reactive intermediates by cycloadditions	893
	Other thermal cycloadditions	894
	Photochemical $[2 + 2]$ cycloadditions	896
	Thermal $[2 + 2]$ cycloadditions	898
	Making five-membered rings: 1,3-dipolar	0.00
	cycloadditions	901
	Two very important synthetic reactions: cycloaddition of alkenes with osmium tetroxide and with ozone	905
	Summary of cycloaddition reactions	907
	Further reading	908
35	Pericyclic reactions 2: sigmatropic and	000
	electrocyclic reactions	909
	Sigmatropic rearrangements	909
	Orbital descriptions of [3,3]-sigmatropic rearrangements	912
	The direction of [3,3]-sigmatropic rearrangements	913
	[2,3]-Sigmatropic rearrangements	917
	[1,5]-Sigmatropic hydrogen shifts	919
	Electrocyclic reactions	922
	Further reading	930
36	Participation, rearrangement, and fragmentation	931
		321
	Neighbouring groups can accelerate substitution reactions	931
	Rearrangements occur when a participating group	007
	ends up bonded to a different atom	937
	Carbocations readily rearrange	940
	The pinacol rearrangement	945
	The dienone-phenol rearrangement	949
	The benzilic acid rearrangement	950
	The Favorskii rearrangement	950 953
	Migration to oxygen: the Baeyer–Villiger reaction	
	The Beckmann rearrangement	958
	Polarization of C–C bonds helps fragmentation	960
	Fragmentations are controlled by stereochemistry	962 963
	Ring expansion by fragmentation	905 965
	Controlling double bonds using fragmentation The synthesis of nootkatone: fragmentation	205
	showcase	966
	Looking forward	969
	Further reading	969
37	Radical reactions	970
	Radicals contain unpaired electrons	970

Radicals form by homolysis of weak bonds

Most radicals are extremely reactive	974	S
How to analyse the structure of radicals: electron		C
spin resonance	975	F
Radical stability	977	
How do radicals react?	980	40
Radical-radical reactions	980	
Radical chain reactions	984	C
Chlorination of alkanes	986	Т
Allylic bromination	989	E
Reversing the selectivity: radical substitution		F
of Br by H	990	ł
Carbon-carbon bond formation with radicals	992	T
The reactivity pattern of radicals is quite different		ł
from that of polar reagents	997	(
Alkyl radicals from boranes and oxygen	998	Þ
Intramolecular radical reactions are more efficient		F
than intermolecular ones	999	A
Looking forward	1002	b
Further reading	1002	F
		r

38 Synthesis and reactions of carbenes

1003
1005
1006
1006
1010
1013
1013
1018
1020
1022
1023
1027
1027

39 Determining reaction mechanisms

There are mechanisms and there are mechanisms	1029
Determining reaction mechanisms: the Cannizzaro reaction	1031
	1021
Be sure of the structure of the product	1035
Systematic structural variation	1040
The Hammett relationship	1041
Other kinetic evidence for reaction mechanisms	1050
Acid and base catalysis	1053
The detection of intermediates	1060
Stereochemistry and mechanism	1063

CONTENTS

1003

41

42

1029

Summary of methods for the investigation	
of mechanism	1067
Further reading	1068
Organometallic chemistry	1069
Transition metals extend the range of	
organic reactions	1069
The 18 electron rule	1070
Bonding and reactions in transition metal complexes	1073
Palladium is the most widely used metal in homogeneous catalysis	1078
The Heck reaction couples together an organic	
halide or triflate and an alkene	1079
Cross-coupling of organometallics and halides	1082
Allylic electrophiles are activated by palladium(0)	1088
Palladium-catalysed amination of aromatic rings	1092
Alkenes coordinated to palladium(II) are attacked	
by nucleophiles	1096
Palladium catalysis in the total synthesis of a natural alkaloid	1098
An overview of some other transition metals	1098
Further reading	1101
Turther redding	1101
Asymmetric synthesis	1102
Nature is asymmetric	1102
The chiral pool: Nature's chiral centres 'off the shelf'	1104
Resolution can be used to separate enantiomers	1106
Chiral auxiliaries	1107
Chiral reagents	1113
Asymmetric catalysis	1114
Asymmetric formation of carbon–carbon bonds	1126
Asymmetric aldol reactions	1129
Enzymes as catalysts	1132
Further reading	1133
Organic chemistry of life	1134
Primary metabolism	1134
Life begins with nucleic acids	1135
Proteins are made of amino acids	1139
Sugars—just energy sources?	1142
Lipids	1147
Mechanisms in biological chemistry	1149
Natural products	1156
Fatty acids and other polyketides are made from acetyl CoA	1161
Terpenes are volatile constituents of plants	1164
Further reading	1167
5	

xiii

xiv

43	Organic chemistry today	1169
	Science advances through interaction	
	between disciplines	1169
	Chemistry vs viruses	1170
	The future of organic chemistry	1179
	Further reading	1181

1182
1184
1187

Abbreviations

Ac	Acetyl	DMS	Dimethyl sulfide
Acac	Acetylacetonate	DMSO	Dimethyl sulfoxide
AD	Asymmetric dihydroxylation	DNA	Deoxyribonucleic acid
ADP	Adenosine 52-diphosphate	E1	Unimolecular elimination
AE	Asymmetric epoxidation	E2	Bimolecular elimination
AIBN	Azobisisobutyronitrile	Ea	Activation energy
AO	Atomic orbital	EDTA	Ethylenediaminetetraacetic acid
Ar	Aryl	EPR	Electron paramagnetic resonance
ATP	Adenosine triphosphate	ESR	Electron spin resonance
9-BBN	9-Borabicyclo[3.3.1]nonane	Et	Ethyl
BHT	Butylated hydroxy toluene (2,6-di-t-	FGI	Functional group interconversion
	butyl-4-methylphenol)	Fmoc	Fluorenylmethyloxycarbonyl
BINAP	Bis(diphenylphosphino)-1,1'-	GAC	General acid catalysis
-	binaphthyl	GBC	General base catalysis
Bn	Benzyl	HMPA	Hexamethylphosphoramide
Boc, BOC	<i>tert</i> -Butyloxycarbonyl	HMPT	Hexamethylphosphorous triamide
Bu	Butyl	HOBt	1-Hydroxybenzotriazole
s-Bu	sec-Butyl	НОМО	Highest occupied molecular orbital
t-Bu	tert-Butyl	HPLC	High performance liquid
Bz	Benzoyl		chromatography
Cbz	Carboxybenzyl	HIV	Human immunodeficiency virus
CDI	Carbonyldiimidazole	IR	Infrared
CI	Chemical ionization	KHMDS	Potassium hexamethyldisilazide
СоА	Coenzyme A	LCAO	Linear combination of atomic orbitals
COT	Cyclooctatetraene	LDA	Lithium diisopropylamide
Ср	Cyclopentadienyl	LHMDS	Lithium hexamethyldisilazide
DABCO	1,4-Diazabicyclo[2.2.2]octane	LICA	Lithium isopropylcyclohexylamide
DBE	Double bond equivalent	LTMP, LiTMP	Lithium 2,2,6,6-tetramethylpiperidide
DBN	1,5-Diazabicyclo[4.3.0]non-5-ene	LUMO	Lowest unoccupied molecular orbital
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene	<i>m</i> -CPBA	meta-Chloroperoxybenzoic acid
DCC	<i>N,N</i> -dicyclohexylcarbodiimide	Me	Methyl
DDQ	2,3-Dichloro-5,6-dicyano-1,4-	МО	Molecular orbital
	benzoquinone	МОМ	Methoxymethyl
DEAD	Diethyl azodicarboxylate	Ms	Methanesulfonyl (mesyl)
DIBAL	Diisobutylaluminum hydride	NAD	Nicotinamide adenine dinucleotide
DMAP	4-Dimethylaminopyridine	NADH	Reduced NAD
DME	1,2-Dimethoxyethane	NBS	N-Bromosuccinimide
DMF	N,N-Dimethylformamide	NIS	N-Iodosuccinimide
DMPU	1,3-Dimethyl-3,4,5,6-tetrahydro- 2(1 <i>H</i>)-pyrimidinone	NMO	N-Methylmorpholine-N-oxide

NMR	Nuclear magnetic resonance	SOMO	Singly occupied molecular orbital
NOE	Nuclear Overhauser effect	STM	Scanning tunnelling microscopy
PCC	Pyridinium chlorochromate	TBDMS	Tert-butyldimethylsilyl
PDC	Pyridinium dichromate	TBDPS	Tert-butyldiphenylsilyl
Ph	Phenyl	Tf	Trifluoromethanesulfonyl (triflyl)
PPA	Polyphosphoric acid	THF	Tetrahydrofuran
Pr	Propyl	THP	Tetrahydropyran
i-Pr	iso-Propyl	TIPS	Triisopropylsilyl
PTC	Phase transfer catalysis	TMEDA	N,N,N',N'-tetramethyl-1,2-
PTSA	<i>p</i> -Toluenesulfonic acid		ethylenediamine
Ру	Pyridine	TMP	2,2,6,6-Tetramethylpiperidine
Red Al	Sodium <i>bis</i> (2-methoxyethoxy)	TMS	Trimethylsilyl, tetramethylsilane
	aluminum hydride	TMSOTf	Trimethylsilyl triflate
RNA	Ribonucleic acid	TPAP	Tetra-N-propylammonium
SAC	Specific acid catalysis		perruthenate
SAM	S-Adenosyl methionine	Tr	Triphenylmethyl (trityl)
SBC	S-Adenosyl methionine Specific base catalysis	TS	Transition state
S _N 1	Unimolecular nucleophilic	Ts	<i>p</i> -Toluenesulfonyl, tosyl
	substitution	UV	Ultraviolet
S _N 2	Bimolecular nucleophilic substitution	VSEPR	Valence shell electron pair repulsion

ABBREVIATIONS

xvi

Preface to the second edition

Students of chemistry are not hard-pressed to find a text to support their learning in organic chemistry through their years at university. The shelves of a university bookshop will usually offer a choice of at least half a dozen—all entitled 'Organic Chemistry', all with substantially more than 1000 pages. Closer inspection of these titles quickly disappoints expectations of variety. Almost without exception, general organic chemistry texts have been written to accompany traditional American sophomore courses, with their rather precisely defined requirements. This has left the authors of these books little scope for reinvigorating their presentation of chemistry with new ideas.

We wanted to write a book whose structure grows from the development of ideas rather than being dictated by the sequential presentation of facts. We believe that students benefit most of all from a book which leads from familiar concepts to unfamiliar ones, not just encouraging them to *know* but to *understand* and to understand *why*. We were spurred on by the nature of the best modern university chemistry courses, which themselves follow this pattern: this is after all how science itself develops. We also knew that if we did this we could, from the start, relate the chemistry we were talking about to the two most important sorts of chemistry that exist—the chemistry that is known as life, and the chemistry as practised by chemists solving real problems in laboratories.

We aimed at an approach which would make sense to and appeal to today's students. But all of this meant taking the axe to the roots of some long-standing textbook traditions. The best way to find out how something works is to take it apart and put it back together again, so we started with the tools for expressing chemical ideas: structural diagrams and curly arrows. Organic chemistry is too huge a field to learn even a small part by rote, but with these tools, students can soon make sense of chemistry which may be unfamiliar in detail by relating it to what they know and understand. By calling on curly arrows and ordering chemistry according to mechanism we allow ourselves to discuss mechanistically (and orbitally) simple reactions (addition to C=O, for example) before more complex and involved ones (such as S_N1 and S_N2).

Complexity follows in its own time, but we have deliberately omitted detailed discussion of obscure reactions of little value, or of variants of reactions which lie a simple step of mechanistic logic from our main story: some of these are explored in the problems associated with each chapter, which are available online.¹ We have similarly aimed to avoid exhuming principles and rules (from those of Le Châtelier through Markovnikov, Saytseff, least motion, and the like) to explain things which are better understood in terms of unifying fundamental thermodynamic or mechanistic concepts.

All science must be underpinned by evidence, and support for organic chemistry's claims is provided by spectroscopy. For this reason we first reveal to students the facts which spectroscopy tells us (Chapter 3) before trying to explain them (Chapter 4) and then use them to deduce mechanisms (Chapter 5). NMR in particular forms a significant part of four chapters in the book, and evidence drawn from NMR underpins many of the discussions right through the book. Likewise, the mechanistic principles we outline in Chapter 5, firmly based in the orbital theories of Chapter 4, underpin all of the discussion of new reactions through the rest of the book.

We have presented chemistry as something whose essence is truth, of provable veracity, but which is embellished with opinions and suggestions to which not all chemists subscribe. We aim to avoid dogma and promote the healthy weighing up of evidence, and on occasion we are content to leave readers to draw their own conclusions. Science is important not just to scientists, but to society. Our aim has been to write a book which itself takes a scientific

¹ See www.oxfordtextbooks.co.uk/orc/clayden2e/.

standpoint—'one foot inside the boundary of the known, the other just outside'2—and encourages the reader to do the same.

The authors are indebted to the many supportive and critical readers of the first edition of this book who have supplied us over the last ten years with a stream of comments and corrections, hearty encouragements and stern rebukes. All were carefully noted and none was overlooked while we were writing this edition. In many cases these contributions helped us to correct errors or make other improvements to the text. We would also like to acknowledge the support and guidance of the editorial team at OUP, and again to recognize the seminal contribution of the man who first nurtured the vision that organic chemistry could be taught with a book like this, Michael Rodgers. The time spent on the preparation of this edition was made available only with the forbearance of our families, friends and research groups, and we thank all of them for their patience and understanding.

Changes for this edition

In the decade since the publication of the first edition of this book it has become clear that some aspects of our original approach were in need of revision, some chapters in need of updating with material which has gained in significance over those years, and others in need of shortening. We have taken into account a consistent criticism from readers that the early chapters of the first edition were too detailed for new students, and have made substantial changes to the material in Chapters 4, 8, and 12, shifting the emphasis towards explanation and away from detail more suitably found in specialised texts. Every chapter has been rewritten to improve clarity and new explanations and examples have been used widely. The style, location, and content of the spectroscopy chapters (3, 13, 18, and 31) have been revised to strengthen the links with material appearing nearby in the book. Concepts such as conjugate addition and regioselectivity, which previously lacked coherent presentation, now have their own chapters (22 and 24). In some sections of the first edition, groups of chapters were used to present related material: these chapter groups have now been condensed—so, for example, Chapters 25 and 26 on enolate chemistry replace four previous chapters, Chapters 31 and 32 on cyclic molecules replace three chapters, Chapter 36 on rearrangements and fragmentations replaces two chapters, and Chapter 42 on the organic chemistry of life replaces three chapters (the former versions of which are available online). Three chapters placed late in the first edition have been moved forward and revised to emphasize links between their material and the enolate chemistry of Chapters 25 and 26, thus Chapter 27 deals with double-bond stereocontrol in the context of organo-main group chemistry, and Chapters 29 and 30, addressing aromatic heterocycles, now reinforce the link between many of the mechanisms characteristic of these compounds and those of the carbonyl addition and condensation reactions discussed in the previous chapters. Earlier discussion of heterocycles also allows a theme of cyclic molecules and transition states to develop throughout Chapters 29–36, and matches more closely the typical order of material in undergraduate courses.

Some fields have inevitably advanced considerably in the last 10 years: the chapters on organometallic chemistry (40) and asymmetric synthesis (41) have received the most extensive revision, and are now placed consecutively to allow the essential role of organometallic catalysis in asymmetric synthesis to come to the fore. Throughout the book, new examples, especially from the recent literature of drug synthesis, have been used to illustrate the reactions being discussed.

Organic chemistry and this book

You can tell from the title that this book tells you about organic chemistry. But it tells you more than that: it tells you *how we know* about organic chemistry. It tells you facts, but it also teaches you how to find facts out. It tells you about reactions, and teaches you how to predict which reactions will work; it tells you about molecules, and it teaches you how to work out ways of making them.

We said 'it tells' in that last paragraph. Maybe we should have said 'we tell' because we want to speak to you through our words so that you can see how we think about organic chemistry and to encourage you to develop your own ideas. We expect you to notice that three people have written this book, and that they don't all think or write in the same way. That is as it should be. Organic chemistry is too big and important a subject to be restricted by dogmatic rules. Different chemists think in different ways about many aspects of organic chemistry and in many cases it is not yet, and may never be, possible to be sure who is right. In many cases it doesn't matter anyway.

We may refer to the history of chemistry from time to time but we are usually going to tell you about organic chemistry as it is now. We will develop the ideas slowly, from simple and fundamental ones using small molecules to complex ideas and large molecules. We promise one thing. We are not going to pull the wool over your eyes by making things artificially simple and avoiding the awkward questions. We aim to be honest and share both our delight in good complete explanations and our puzzlement at inadequate ones.

The chapters

So how are we going to do this? The book starts with a series of chapters on the structures and reactions of simple molecules. You will meet the way structures are determined and the theory that explains those structures. It is vital that you realize that theory is used to explain what is known by experiment and only then to predict what is unknown. You will meet mechanisms—the dynamic language used by chemists to talk about reactions—and of course some reactions.

The book starts with an introductory section of four chapters:

- 1. What is organic chemistry?
- 2. Organic structures
- 3. Determining organic structures
- 4. Structure of molecules

Chapter 1 is a 'rough guide' to the subject—it will introduce the major areas where organic chemistry plays a role, and set the scene by showing you some snapshots of a few landmarks. In Chapter 2 you will look at the way in which we present diagrams of molecules on the printed page. Organic chemistry is a visual, three-dimensional subject and the way you draw molecules shows how you think about them. We want you too to draw molecules in the best way possible. It is just as easy to draw them well as to draw them in an old-fashioned or inaccurate way.

Then in Chapter 3, before we come to the theory which *explains* molecular structure, we shall introduce you to the experimental techniques which *tell us about* molecular structure. This means studying the interactions between molecules and radiation by spectroscopy—using the whole electromagnetic spectrum from X-rays to radio waves. Only then, in Chapter 4, will we go behind the scenes and look at the theories of why atoms combine in the ways they do. Experiment comes before explanation. The spectroscopic methods of Chapter 3 will still be telling the truth in a hundred years' time, but the theories of Chapter 4 will look quite dated by then.