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Abstract. A simple measure of the uncertainty associated
with using radar-derived rainfall estimates as “truth” has
been introduced to the Numerical Weather Prediction (NWP)
verification process to assess the effect on forecast skill
and errors. Deterministic precipitation forecasts from the
mesoscale version of the UK Met Office Unified Model for a
two-day high-impact event and for a month were verified at
the daily and six-hourly time scale using a spatially-based
intensity-scale method and various traditional skill scores
such as the Equitable Threat Score (ETS) and log-odds ra-
tio. Radar-rainfall accumulations from the UK Nimrod radar-
composite were used.

The results show that the inclusion of uncertainty has some
effect, shifting the forecast errors and skill. The study also al-
lowed for the comparison of results from the intensity-scale
method and traditional skill scores. It showed that the two
methods complement each other, one detailing the scale and
rainfall accumulation thresholds where the errors occur, the
other showing how skillful the forecast is. It was also found
that for the six-hourly forecasts the error distributions remain
similar with forecast lead time but skill decreases. This high-
lights the difference between forecast error and forecast skill,
and that they are not necessarily the same.

1 Introduction

Precipitation estimates from weather radar provide the most
detailed information regarding the complex spatial and tem-
poral distribution of precipitation. Despite continued devel-
opment and improvement in estimation methods, it is widely
acknowledged that errors in the rainfall estimates can still
be a factor of two (−50%/+100%) (e.g.Joss and Waldvogel,
1990), and this isafter bias correction using rain-gauge data.
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Among the radar community the difficulties of quantita-
tive precipitation estimation are well documented. Besides
instrument limitations and calibration issues, estimates are
affected by the vertical profile of reflectivity, low-level oro-
graphic growth, anomalous propagation, ground clutter, at-
tenuation or the presence of other spurious echos (e.g.Joss
and Waldvogel, 1990; Harrison et al., 2000). Corrections for
these must be applied to improve data quality. Yet other
problems remain. For example, radar may under-estimate
precipitation because the droplet size of drizzle or light rain
drops is too small and therefore below the detection thresh-
old (Golding, 2000). Alternatively, the radar may simply
not be able to see all the precipitation, due to partial block-
ing or the beam over-shooting shallow precipitation at long
ranges. Rain measured aloft may evaporate before reach-
ing the ground, leading to an over-estimation. Wind drift
of precipitation particles may also lead to displacement er-
rors (Mittermaier et al., 2004). This is particularly relevant
if radar measurements above the freezing level (bright band)
are used for estimating precipitation at the ground. Opera-
tionally data quality may also suffer due to missing data.

Rain gauges remain the main source of precipitation ob-
servations, along with radar and satellites. Rain gauges
have good time resolution and provide an accurate estimate
of ground truth at specific locations. However, rain gauge
networks are often very sparse and unevenly distributed in
space. Radar and satellite observations have good spatial
coverage, yet the precipitation estimate at the ground ob-
tained from these measurements is indirectly inferred from
radar reflectivity or brightness temperature respectively. The
temporal sampling of satellites in particular can make the use
of satellite precipitation unsuitable for the verification of in-
dividual forecasts from high-resolution models. Despite the
uncertainties and errors associated with radar-rainfall esti-
mates, they are being used as “truth” for the verification of
mesoscale models,without taking the errors of the estimate
into account. This is especially necessary as the horizontal
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resolution of mesoscale models today require a verifying data
set at resolutions finer than what most rain-gauge networks
can provide. When it comes to the verification of extreme
events, radar alone can provide the kind of detail that is re-
quired.

Traditional verification scores do not fully account for the
unique characteristics of precipitation. For example, the root-
mean-squared error (RMSE) is sensitive to discontinuities,
noise and outliers, thus skewing or distorting the results.
Moreover, verification scores for continuous forecasts do not
account for the complex spatial interdependency of precipi-
tation values. Categorical verification scores, which utilize
thresholds are generally better suited to cope with precipi-
tation fields (circumventing the problem of outlier contam-
ination), and are more widely used for quantitative precip-
itation forecast (QPF) verification. Unfortunately many of
these scores are overly sensitive to the base rate (frequency
of occurrence) of an event and to the frequency bias (ratio
of the observed to the predicted events).Göber et al.(2004)
show that forecasts of extreme or rare events have more skill
than those of relatively “normal” events, by using scores not
sensitive to the base rate. They also state that recent trends
due to model improvements show a small increase in skill but
a large reduction in model bias for forecasts of light precipi-
tation.

Recently developed verification techniques (e.g.Briggs
and Levine, 1997; Zepeda-Arce and Foufoula-Georgiou,
2000) aim to provide more informative feedback on some
of the physical aspects of the forecast error, by verifying at
different spatial scales. In doing so, there is the recogni-
tion that precipitation phenomena occur on different scales
(e.g. showers or fronts) and are driven by different physical
processes (e.g. convection or large scale synoptic processes).
This approach can help determine which model processes
need further development.Casati et al.(2004) describe an
intensity-scale verification method which uses wavelet de-
composition. The technique allows the differences between
the forecast and the observation to be diagnosed as a function
of the spatial scale of the error and intensity of the precipita-
tion events. This enables a separate evaluation of mesoscale
and convective features (such as fronts or convective cells),
drizzle and intense events.Mittermaier(2006) devised a non-
parametric method for aggregating individual intensity-scale
decompositions for compiling longer-term statistics. The
intensity-scale method has been further expanded byCasati
and Wilson(2007) to decompose the Brier score. Another
approach is described byRoberts and Lean(2008), particu-
larly addressing the needs for presenting results from very
high-resolution model runs at 1, 2 and 4 km.Roberts and
Lean introduce a fractional exceedance where a probabil-
ity is calculated based on the number of model grid points
with precipitation exceeding a given threshold, in a prede-
fined area. By performing this analysis for predefined ar-
eas of different sizes, the optimum product presentation grid
length can be determined.

Turner et al.(2004) discuss methods used for improv-
ing nowcasts of precipitation through the filtering of non-
predictable scales of precipitation and how this improves
skill. Seed(2003) also uses the fact that the lifetime of a
precipitation pattern is dependent on the spatial scale of the
pattern, linking the lifetime of the event to its predictability,
or rather the lack of predictability of small-scale. Fast evolv-
ing features substantiate the need for averaging model out-
put to a scale coarser than the model resolution to obtain the
best forecast. This ties in with the idea ofRoberts and Lean
(2008) in attempting to find the optimum scale for presenting
model output.

Crucially, the nowcasting and NWP community have con-
verged on the use of radar data and the understanding that
small-scale features are less predictable. Both have recog-
nized that a temporally varying optimal averaging length ex-
ists where the forecast accuracy and skill are maximized, and
the error minimized. Yet, the uncertainty in the radar prod-
ucts used has not been incorporated thus far. Fortunately
this is changing. Several different approaches for incorporat-
ing uncertainty are emerging. For downstream hydrological
applications, radar-generated ensembles are being explored
by Germann et al.(2006) andBowler et al.(2006). An at-
tempt is made at quantifying the uncertainties in motion and
evolution of radar-derived rainfall products so that the actual
radar fields can be stochastically perturbed, and an ensemble
of realizations produced. These are examples of how un-
certainties in the radar measurements can be incorporated in
“real-time”. Verification by contrast is very much an “after
the event” exercise.

Quantifying the uncertainty in the observations used to
verify NWP model forecasts has gained greater prominence
in recent years. For exampleBowler (2006) has used a de-
convolution method to consider the impact on deterministic
categorical scores whilstSaetra et al.(2004) considered the
impact on ensemble probabilistic forecast verification mea-
sures. When using radar-rainfall estimates for verifying pre-
cipitation forecasts, two additional options come to mind:
applying an error bound (or function) to the accumulation
field (the simplest, computationally least expensive option),
or generating multiple realizations of the accumulation field
by adding error-bounded “noise” to the accumulation field.

In this paper, as a first attempt, the simplest but well-
established constant factor-of-two error associated with
radar-rainfall estimates is added to the verification process.
The impact is assessed using the intensity-scale method in-
troduced byCasati et al.(2004) and various more traditional
measures of skill. A brief summary of the intensity-scale
method is given in Sect.2 together with the method for in-
cluding the radar-rainfall estimate error. This is followed by
a description of the model fields and the radar data using in
subsequent sections. In Sect.3 a two-day heavy rainfall event
during June 2004 is used to assess the impact on individual
forecasts and more extreme events. Both the daily and six-
hourly accumulations are assessed. The month of June 2004
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is assessed as a whole in Sect.4. A summary and conclud-
ing remarks are presented in Sect.5. A basic introduction to
categorical statistics is provided in Appendix A.

2 Method

2.1 Intensity-scale method

For a complete description of the method the reader is re-
ferred toCasati et al.(2004). Some notable differences be-
tween the method proposed byCasati et al.and the method
used here, include the following: no dithering step is per-
formed because all values included in the error analysis are
floating-point numbers; and secondly no forecast recalibra-
tion was performed. The analysis is performed on a 27 by 27

spatial domain, withL=7.
Thresholding is used to convert the forecast (Y ) and anal-

ysis (X) into binary images. In line with the original method,
thresholds are factors of two beginning with one-eighth of
a millimetre up to 128 mm (this is done to achieve log-
normality). The difference between the binary forecast and
analysis defines thebinary error Z=IY −IX. The binary er-
ror image is then decomposed and expressed as the sum of
components on different spatial scales by performing a two-
dimensional discrete Haar wavelet decomposition. Alterna-
tively the two-dimensional discrete Haar wavelet decompo-
sition can also be obtained more simply by averaging over
square regions on different scales. The mean-squared error
(MSE) of the binary error image is given by the average of all
the differences over all the pixels in the domain. Therefore
the MSE of the binary error image is equal to

MSE =

L∑
l=1

MSEl, (1)

where MSEl=Z2
l is the MSE of thel-th spatial scale com-

ponent of the binary error image. For each precipitation rate
threshold, the binary MSE skill scoreSS can be calculated,
relative to the MSE of a random forecast:

SS = 1 −
MSE

B ε(1 − ε) + ε(1 − Bε)
(2)

where the denominator represents the random MSE calcu-
lated from the base rateε (observed frequency of occurrence)
and the biasB of the sample at a given threshold. As with
most skill scores a perfect forecast has a value of 1. When
the score is zero it means that the forecast is no better than
a random forecast. Negative values imply that the model is
worse than the random forecast, in terms of the MSE, al-
though this does not necessarily mean that the model fore-
cast has no skill. As shall be seen in following sections, the
horizontal scale where the error is “eliminated” is often of
such a magnitude that it could be argued whether a forecast
averaged to such a length scale would beuseful. It is worth

noting that the intensity-scale method is not a tool to show
strength of skill. It merely shows that when theSS is posi-
tive, it is skillful, but nothowskillful. Therefore the outcome
of this method is strongly biased towards understanding the
error and identifying the source through the scale and inten-
sity of where, and when it occurs. It is a diagnostic tool.

2.2 Introducing uncertainty

The thresholding process produces binary fieldsIX and IY

for each of theN accumulation thresholdsu=u1, ..., uN for
n=1, ..., N as shown in Eq. (3).

IY =

{
1 if Y > un

0 if Y ≤ un
IX =

{
1 if X > un

0 if X ≤ un
(3)

The +100% error (representing the potential over-estimation)
is implicitly included as the thresholding is open-ended.
However, no effort is made to account for the possible under-
estimation of precipitation by radar. This could be important
as, given the spatial coverage of radars, they provide the best
means of testing the rain-no rain boundary. As mentioned
in the Sect.1, there is a lingering question of whether it is
the model that produces too large areas of drizzle and light
rain, or whether the radar, at longer ranges (due to beam
over-shooting), or due to droplet size, fails to detect this very
light rain and drizzle. To address this potential underestima-
tion, we can implement a−50% uncertainty, using “lagged”
thresholding. So now Eq. (3) applies only to the first thresh-
old u1. For all subsequent thresholds:

IY =

{
1 if Y > un

0 if Y ≤ un
IX =

{
1 if X > un−1
0 if X ≤ un−1

(4)

This is illustrated in Fig.1. This simple implementation is
illustrated using the power-of-two thresholding sequence re-
quired to achieve log-normality. Thus the previous thresh-
old is half of the current one. Using this “lagged” threshold
should enlarge the sample size at the higher rainfall thresh-
olds. As the model tends to produce larger precipitation areas
(especially at lower thresholds) than observed by radar, this
increase in the radar area may possibly favour the model’s
skill. This aspect is considered in the analysis that follows.
Given the non-linearity of all forecasting systems, the intro-
duction of uncertainty should not affect theskill or theerrors
in a uniform manner. Some descriptive measures such as the
bias may show some systematic trends.

2.3 Description of model output

The model forecasts evaluated in this study are 24-h or 6-
hourly precipitation accumulations of the mesoscale (MES)
version of the Met Office Unified Model (UM) spanning the
first 24 h of the forecast (0–24 h). The UM provides a seam-
less nested forecasting system that can be run at multiple res-
olutions. All resolutions share the same dynamic core and
(relevant) parameterizations. The model is non-hydrostatic
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FIG. 1: Schematic showing how the lagged thresholding described in Eqs 3 and 4 is used to introduce uncer-

tainty.

resolutions share the same dynamic core and (relevant) parameterizations. The model is non-hydrostatic and

is based on semi-implicit, semi-Lagrangian numerics. At this time it was run with 38 levels in the vertical, of

which 13 are in the lowest 5 km. It uses terrain-following co-ordinates. Further details of the model can be

found in Davies et al. (2005).

It is recognized that using 24-hr accumulations may damp timing errors at shorter time scales, such as the

time of a frontal passage at a given location. Therefore the four six-hourly accumulations spanning the same

24-hr period are also studied. The model in its current operational configuration has a 0.11◦ resolution which

translates to around 12 km over the UK. The precipitation accumulation is the sum of the convective and large

scale, liquid and snow amounts. The model is run four times a day but only the 12 UTC run was evaluated in

this study.

d. Radar data

NIMROD is an automated short-range mesoscale nowcasting system used operationally at the UK Met

Office (Golding, 1998). NIMROD produces hourly precipitation rate forecasts and analyses with a resolution

of 5 km, every 15 minutes, up to 6 hours ahead. The precipitation rate nowcast are produced using radar

and satellite data, along with surface observations. In this study stand-alone deterministic forecasts are being

verified against the NIMROD baseline product which is the quality-controlled UK radar composite. Various

near-continent radars are also part of the composite but these were excluded from this study. The 5 km radar
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Fig. 1. Schematic showing how the lagged thresholding described
in Eqs. (3) and (4) is used to introduce uncertainty. The solid line
refers to thresholds for this study, whereas the dashed line shows
when equal thresholds are applied.

and is based on semi-implicit, semi-Lagrangian numerics. At
this time it was run with 38 levels in the vertical, of which 13
are in the lowest 5 km. It uses terrain-following co-ordinates.
Further details of the model can be found inDavies et al.
(2005).

It is recognized that using 24-h accumulations may damp
timing errors at shorter time scales, such as the time of a
frontal passage at a given location. Therefore the four six-
hourly accumulations spanning the same 24-h period are also
studied. The model in its current operational configuration
has a 0.11◦ resolution which translates to around 12 km over
the UK. The precipitation accumulation is the sum of the
convective and large scale, liquid and snow amounts. The
model is run four times a day but only the 12:00 UTC run
was evaluated in this study.

2.4 Radar data

NIMROD is an automated short-range mesoscale nowcasting
system used operationally at the UK Met Office (Golding,
1998). NIMROD produces hourly precipitation rate fore-
casts and analyses with a resolution of 5 km, every 15 min,
up to 6 h ahead. The precipitation rate nowcast are produced
using radar and satellite data, along with surface observa-
tions. In this study stand-alone deterministic forecasts are
being verified against the NIMROD baseline product which
is the quality-controlled UK radar composite. Various near-
continent radars are also part of the composite but these were
excluded from this study. The 5 km radar data are averaged

data are averaged onto the MES grid, and given the radar coverage, comparisons can only be made where

radar data are available.

FIG. 2: The analysis field from the global UM at 00 UTC on 23 June 2004.

3. A heavy precipitation event case study

The main precipitation event for the month of June 2004 occurred on the 22nd and 23rd when a deep

depression tracked across Wales and northern England. The central pressure at 06:00 UTC on the 23rd was

982 hPa, making it one of the deepest depressions recorded in June over England and Wales. Many parts of

south-western, southern and central England and Wales received over 25 mm of rain in 24 hours, based on the

NIMROD radar-rainfall product. On the 23rd gale force winds along the English Channel coast gave gusts in

excess of 50 knots. The low passed over the country from south-west to north-east eventually tracking over

the North Sea on the 24th but not before giving another 50 mm (radar) of rain over north-eastern England and

gusts of 40–50 knots over eastern England. Figure 2 shows the midnight analysis on the 23rd from the Unified

global model, the position of the low centre just south of Ireland.

Rainfall was concentrated more in the south and west on the 22nd, shifting to the central and northern parts

on the 23rd. The twenty-four hour rainfall accumulations shown in Fig. 3 are for the 23rd. Accumulations

for the two days ranged between 25–50 mm for most parts. As described in Section 2d the MES fields are

masked using the area covered by radar, with non-UK radars excluded.
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Fig. 2. The analysis field from the global UM at 00:00 UTC on
23 June 2004.

onto the MES grid, and given the radar coverage, compar-
isons can only be made where radar data are available.

3 A heavy precipitation event case study

The main precipitation event for the month of June 2004 oc-
curred on the 22nd and 23rd when a deep depression tracked
across Wales and northern England. The central pressure
at 06:00 UTC on the 23rd was 982 hPa, making it one of
the deepest depressions recorded in June over England and
Wales. Many parts of south-western, southern and central
England and Wales received over 25 mm of rain in 24 h,
based on the NIMROD radar-rainfall product. On the 23rd
gale force winds along the English Channel coast gave gusts
in excess of 50 knots. The low passed over the country from
south-west to north-east eventually tracking over the North
Sea on the 24th but not before giving another 50 mm (radar)
of rain over north-eastern England and gusts of 40–50 knots
over eastern England. Figure2 shows the midnight analysis
on the 23rd from the Unified global model, the position of
the low centre just south of Ireland.

Rainfall was concentrated more in the south and west on
the 22nd, shifting to the central and northern parts on the
23rd. The twenty-four hour rainfall accumulations shown
in Fig. 3 are for the 23rd. Accumulations for the two days
ranged between 25–50 mm for most parts. As described in
Sect.2.4 the MES fields are masked using the area covered
by radar, with non-UK radars excluded.
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(b) MES 0−24h rainfall
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FIG. 3: Twenty-four hour rainfall accumulations from 12:00 UTC to 12:00 UTC from the radar composites

(a) and the 12:00 UTC MES run (b).

a. Event analysis

By inspection of Fig. 3 it can be seen that the UM predicted the general pattern of precipitation correctly but

appears to over-estimate rainfall exceeding 16 mm.d−1. The areas with most intense rainfall (> 32 mm.d−1)

over Scotland are placed further to the east by the model.

The forecasts were analyzed with a selection of traditional measures of skill (See Appendix A). A slightly

different set of rainfall thresholds with more thresholds between 4–48 mm were used. For robustness, a

minimum sample size of 5 was set for each of the contingency table entries. The Equitable Threat Score (ETS)

was used, along with ROC-like (relative operating characteristic) curves, the frequency bias and the logarithm

of the odds ratio. Note that ROC is usually used for probabilistic forecast verification, plotting the skill of

different probabilities for a single threshold. Here we are plotting the hit rate versus the false alarm rate as a

function of thresholds (in the strictest sense there is only one point on a ROC plot for a deterministic forecast

as there is only one outcome). It must be kept in mind that a “0” (such as may be the case for individual

forecasts) in any entry of the contingency table means that the odds ratio is undefined and inappropriate for

use (e.g. Jolliffe and Stephenson, 2003; Wilks, 2006). At the monthly time scale this may not be an issue

because there should be sufficient spread in the sample. A perfect forecast would score an ETS of 1. A

no-skill forecast has an ETS of zero. The ETS can be skillful when negative; it implies that the values in

the contingency table are reversed. For the ROC curve the balance is between maximizing the hit rate and
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Fig. 3. Twenty-four hour rainfall accumulations from 12:00 UTC to 12:00 UTC from the radar composites(a) and the 12:00 UTC MES run
(b).

3.1 Event analysis

By inspection of Fig.3 it can be seen that the UM predicted
the general pattern of precipitation correctly but appears to
over-estimate rainfall exceeding 16 mm.d−1. The areas with
most intense rainfall (>32 mm.d−1) over Scotland are placed
further to the east by the model.

The forecasts were analyzed with a selection of traditional
measures of skill (see Appendix A). A slightly different set
of rainfall thresholds with more thresholds between 4–48 mm
were used. For robustness, a minimum sample size of 5 was
set for each of the contingency table entries. The Equitable
Threat Score (ETS) was used, along with ROC-like (relative
operating characteristic) curves, the frequency bias and the
logarithm of the odds ratio. Note that ROC is usually used
for probabilistic forecast verification, plotting the skill of dif-
ferent probabilities for a single threshold. Here we are plot-
ting the hit rate versus the false alarm rate as a function of
thresholds (in the strictest sense there is only one point on a
ROC plot for a deterministic forecast as there is only one out-
come). It must be kept in mind that a “0” (such as may be the
case for individual forecasts) in any entry of the contingency
table means that the odds ratio is undefined and inappropri-
ate for use (e.g.Jolliffe and Stephenson, 2003; Wilks, 2006).
At the monthly time scale this may not be an issue because
there should be sufficient spread in the sample. A perfect
forecast would score an ETS of 1. A no-skill forecast has
an ETS of zero. The ETS can be skillful when negative; it
implies that the values in the contingency table are reversed.

For the ROC curve the balance is between maximizing the
hit rate and minimizing the false alarm rate per threshold.
Values of the log-odds ratio over 1 imply skill. The log-odds
ratio has been shown to be more useful for verifying extreme
events (Göber et al., 2004) and is also preferable because er-
ror intervals can easily be calculated and plotted. The fre-
quency bias on the other hand is not a measure of skill but a
descriptive measure that will be equal to 1 if the forecasts of
an event occur as frequently as they are observed (base rate).

The various measures were calculated for model and radar
fields averaged to twice the grid length, i.e.∼25 km to elim-
inate most grid-scale errors as suggested by several recent
studies (see e.g.Mittermaier, 2006; Vasíc et al., 2007). Fig-
ure4 shows various skill scores for the event. All the differ-
ent scores appear to agree that the 4 mm.d−1 threshold is the
most skillful. This is where the bias in panel (a) appears to be
closest to 1 and appears to be fairly consistent for all rainfall
accumulations. The bias may increase with threshold if it is
no longer dominated by the hits but by the misses and false
alarms. The bias becomes much larger than 1 when the false
alarms increase disproportionately relative to the misses. The
introduction of uncertainty has a large and reverse impact on
the bias, as seen in panel (a). Whilst the sum of the hits and
the false alarms remains constant the base rate increases, with
the net result a decrease in the bias as the accumulations in-
crease. Introducing a lagged threshold (which increases the
radar area, base rate) causes the misses and false alarms to
trade places (but not necessarily in proportion).
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minimizing the false alarm rate per threshold. Values of the log-odds ratio over 1 imply skill. The log-

odds ratio has been shown to be more useful for verifying extreme events (Göber et al., 2004) and is also

preferable because error intervals can easily be calculated and plotted. The frequency bias on the other hand

is not a measure of skill but a descriptive measure that will be equal to 1 if the forecasts of an event occur as

frequently as they are observed (base rate).
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FIG. 4: Traditional measures of skill for the event 22–23 June 2004, showing results for uncertainty included

and without: (a) Bias, (b) ETS, (c) ROC and (d) log odds ratio ± log-odds error.

The skill scores were calculated for model and radar fields averaged to twice the grid length, i.e. ∼25 km
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4 mm.d−1 threshold is the most skillful. This is where the bias in (a) appears to be closest to 1 and appears
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dominated by the hits but by the misses and false alarms. The bias becomes much larger than 1 when the

10

Fig. 4. Traditional measures of skill for the event 22–23 June 2004, showing results for uncertainty included and without:(a) Bias,(b) ETS,
(c) ROC and(d) log odds ratio± log-odds error.

The ETS shown in panel (b) on the other hand shows a
decrease of up to 0.1 for thresholds between 1–4 mm; fore-
casts with accumulations greater than 8 mm.d−1 are the most
skillful. The interesting result comes from the ROC curve in
panel (c). The false alarm rate is reduced for all thresholds,
and the hit rate is lower for all thresholds. The log-odds ratio
in panel (d) shows that the forecast is skillful at all thresh-
olds, being above 1. The odds-ratio shows a similar reduc-
tion in skill to the ETS. The log-odds ratio shows an increase
in skill whereas the ETS produces a rather low score of 0.4
or less. Introducing uncertainty appears to improve the skill
according to the log-odds ratio for thresholds greater than
8 mm.d−1. This must be linked to the reduction of the false
alarm rate in panel (c).

An intensity-scale representation of the MSE reveals that
error distribution patterns can vary greatly. Errors can be
spread over a range of rainfall thresholds but contained to,
say, the grid scale or to a multiple of the grid scale, yield-
ing a relatively “flat” error distribution. This tends to sug-
gest that there are few timing or displacement problems and
that the overall distribution of the precipitation pattern is well
captured. The differences are small-scale and localized. Al-
ternatively similar magnitude errors at the grid scale may be
found at larger scales but only selected thresholds. This is a
recognizable signature for precipitation features that are dis-
placed either linearly or rotated (in case of fronts that have a
different orientation in the forecast than observed). The er-
ror “propagation” is a function of the underlying method of
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FIG. 5: Mother-wavelet components for the 4 mm/day binary error image (Z = IY − IX ) obtained from the

accumulations in Fig. 3 at (a) 12 km and (b) 48 km. The binary error image is equal to the sum of the mother

wavelets over all spatial scales.
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FIG. 6: Two-dimensional plots of the MSE per threshold and scale, known as “intensity-scale diagrams”, for

23 June 2004 showing the results without uncertainty in (a) and with uncertainty in (b). Note that the point

where a contour terminates implies that no data are available for analysis beyond that point.

corner suggesting that even averaging to twice the grid length would reduce the error considerably. It should

be noted that averaging alone can not eliminate the errors entirely, but acts to minimize it. Some of the errors

are still evident at length scales of 96–192 km for rainfall accumulations of 32 mm.d−1 or more, which relates

to the fact that the most intense rainfall was displaced. The introduction of uncertainty as shown in Fig. 6(b)

has marginally worsened the error at the grid scale and increased the length scale of the worst errors, bearing
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Fig. 5. Mother-wavelet components for the 4 mm/day binary error image (Z=IY −IX) obtained from the accumulations in Fig.3 at (a) 12 km
and(b) 48 km. The binary error image is equal to the sum of the mother wavelets over all spatial scales.

averaging to a coarser resolution. The error will be found at
this coarser resolution so long as the differences between the
observed and model forecasts remain large enough.

Before analysing the intensity-scale diagrams for this
event, consider first the decomposition of the binary error
at the 4 mm threshold at two different scales, as shown in
Fig. 5. These mother-wavelet plots correspond to the accu-
mulations shown in Fig.3. The MSE components capture
the main differences between the forecast and the observed:
there is too little rain over the south in the forecast (negative
differences) and the larger accumulations in the north-west
are not observed (positive differences).

The intensity-scale diagrams in Fig.6 suggest that the
forecast for the event ought to have been quite skillful (as the
scores in Fig.4 show). The intensity-scale diagrams indicate
that the largest errors occur at the grid scale, for the largest
rainfall accumulations. Most of the contours are clustered in
the bottom-right hand corner suggesting that even averaging
to twice the grid length would reduce the error considerably.
It should be noted that averaging alone can not eliminate the
errors entirely, but acts to minimize it. Some of the errors
are still evident at length scales of 96–192 km for rainfall ac-
cumulations of 32 mm.d−1 or more, which relates to the fact
that the most intense rainfall was displaced. The introduction
of uncertainty as shown in Fig.6b has marginally worsened
the error at the grid scale and increased the length scale of the
worst errors, bearing in mind that the threshold range of the
analysis has been extended through the lagged thresholding.

3.2 Six-hourly analysis

The traditional scores for the six-hourly accumulations are
shown in Fig.7. The decrease in the bias with threshold
when including uncertainty is still evident when comparing
panels (a) and (e). The 12–18 h bias is the most consistently
good over all thresholds. The decrease in forecast skill with
lead time is evident in all the panels, and the skill is gener-
ally lower than for the daily totals. The best ETS was greater
than 0.7 for the daily accumulations, but less than 0.6 for
the six-hourly totals, indicating the non-additive properties
of the system. The inclusion of uncertainty produces slight
decreases and increases in skill at different rainfall accumu-
lations which are not statistically significant. The differences
in the ETS may also be related to the non-additive properties
of the ETS. The false alarm rate is reduced, improving the
skill as represented by the ROC in panels (c) and (g). The
hit rate is also reduced. From the log-odds ratio graphs in
panels (d) and (h), there are some gains in skill at the higher
accumulation thresholds (>12 mm) where the introduction
of uncertainty appears to improve the model’s performance
through the increase in the radar area. Another interesting
aspect of the plots without uncertainty is the clear separation
between forecasts 0–12 h and 12–24 h. This is evident for the
ETS, ROC and log-odds ratio.

The intensity-scale diagrams for the six-hourly accumula-
tions are given in Fig.8. There is no evidence of a systematic
pattern in the error distribution when uncertainty is included.
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FIG. 5: Mother-wavelet components for the 4 mm/day binary error image (Z = IY − IX ) obtained from the

accumulations in Fig. 3 at (a) 12 km and (b) 48 km. The binary error image is equal to the sum of the mother

wavelets over all spatial scales.
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FIG. 6: Two-dimensional plots of the MSE per threshold and scale, known as “intensity-scale diagrams”, for

23 June 2004 showing the results without uncertainty in (a) and with uncertainty in (b). Note that the point

where a contour terminates implies that no data are available for analysis beyond that point.
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Fig. 6. Two-dimensional plots of the MSE per threshold and scale, known as “intensity-scale diagrams”, for 23 June 2004 showing the results
without uncertainty in(a) and with uncertainty in(b). Note that the point where a contour terminates implies that no data are available for
analysis beyond that point.

Comparing panels (a) and (e) at 0–6 h lead times the differ-
ences are minimal, with a slight worsening of the errors at
the grid scale. At 6–12 h lead times panels (b) and (f) show
that the worst spatial error at 8 mm is reduced but errors at
16 mm have increased. Perhaps this is more of a redistri-
bution of the error. Panels (c) and (g) which represent lead
times of 12–18 h show that the inclusion of uncertainty wors-
ens the spatial error for totals greater than 8 mm. At 18–24 h
lead time, panels (d) and (h) again indicate the worsening of
the spatial error for totals greater than 8 mm. The errors at or
near the grid scale are largely the same, especially for small
accumulations, typically less than 4 mm. Another point of
comparison is how the model performs at these shorter ac-
cumulation periods as opposed to the daily scale. One could
expect the model to perform less well at the shorter time scale
as timing errors become more pronounced. This is indeed the
case, when comparing Figs.6 and8. The difference lies in
the errors at the grid scale, which are worse for the shorter
time scale. Certainly errors at the grid scale and near twice
the grid scale across all thresholds appear to suggest the need
for averaging to at least twice the grid length.

4 Monthly behaviour

Thus far the impact of introducing uncertainty to the verifi-
cation process has been considered for a two-day heavy rain-
fall event. In this section the effect on longer-term statistics
is assessed. The forecast errors and skill of both daily and
six-hourly accumulations up to a lead time of t+24h are as-
sessed using traditional verification measures and spatial er-
ror decomposition methods. First the method for aggregating
individual intensity-scale diagrams is briefly described.

4.1 A modified sign test statistic

It is highly likely that Numerical Weather Prediction (NWP)
model forecast errors behave non-linearly, which implies that
the skill scoreSS used to construct individual intensity-scale
diagrams can not simply be added together and averaged to
obtain, say, a monthly “mean” intensity-scale diagram.Mit-
termaier(2006) proposed a method for aggregating individ-
ual intensity-scale decompositions using the non-parametric
sign test. For more detail please refer to the paper. In brief,
an array containing the sign test statisticB (which is the num-
ber of positive skill scoresSS for a given intensity and scale
out of a possiblem forecasts) is constructed in intensity-scale
phase space. The null hypothesisH0, is rejected ifb≤bm,α,
whereB is binomially distributed asB∼bi(m, 0.5) for small
samples (m<40), or approximately normally distributed for
large samples. The significance levelα has been set to 0.025.
The result can be visually expressed in intensity-scale phase
space as a modified sign test statistic(m−B)/m which is the
proportion of the scores that are negative. For each scale and
intensity whereH0 is rejected, the location is shaded based
on the modified sign test statistic.

4.2 Monthly statistics based on daily accumulations

Figure9 shows the monthly behaviour of the daily accumu-
lation errors as expressed bySS during June 2004. As ex-
plained in the previous section, shaded regions in this dia-
gram indicate the scales and intensities where the null hy-
pothesis has been rejected, i.e. theSS is negative at a con-
fidence level of 97.5%. The degree of shading shows the
proportion of negative scores. Regions that are shaded black
indicate the proportion is equal to 1, i.e.SS was negative
for every single forecast included in the analysis, and for the
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FIG. 7: Traditional measures (bias, ETS, ROC and log odds ratio) for the six-hourly accumulations from

12 UTC on 22 June 2004 to 12 UTC on 24 June 2004. Panels (a) to (d) show results without uncertainty,

whereas panels (e) to (h) show the results with uncertainty.
14

Fig. 7. Traditional measures (bias, ETS, ROC and log odds ratio) for the six-hourly accumulations from 12:00 UTC on 22 June 2004 to
12:00 UTC on 24 June 2004. Panels(a) to (d) show results without uncertainty, whereas panels(e) to (h) show the results with uncertainty.
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FIG. 8: Intensity-scale diagrams for six-hourly accumulations from 12 UTC on 23 June 2004 to 12 UTC on

24 June 2004. Panels (a) to (d) show results without uncertainty, whereas panels (e) to (h) show the results

with uncertainty. 15

Fig. 8. Intensity-scale diagrams for six-hourly accumulations from 12:00 UTC on 23 June 2004 to 12:00 UTC on 24 June 2004. Panels(a)
to (d) show results without uncertainty, whereas panels(e) to (h) show the results with uncertainty.
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means that the model can be evaluated at a higher threshold, which is why the errors with uncertainty span all

rainfall totals up to 64 mm.d−1. The error distribution has been shifted or redistributed to some extent.

Linking these results to the physical, the persistent errors at the higher thresholds, and at the grid scale

suggest that sub-grid scale parameterizations such as the convection scheme still introduce significant errors

to the output. Displacement and timing errors are more due to how well the model captures the atmosphere’s

dynamical evolution. These errors are clearly discernible on daily and six-hourly intensity-scale diagrams.

They appear on the monthly diagrams as the grey shaded regions of transient errors around the black shaded

region of persistent error.
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FIG. 9: Monthly behaviour of the skill score for daily accumulations during June 2004 as determined from the

sign test statistic. Shaded regions show the scales and intensities where the null hypothesis has been rejected.

The shading corresponds to the proportion of the scores that were negative. Panel (a) shows the results without

the inclusion of uncertainty and (b) with uncertainty in radar-rainfall estimates included.

Although the errors as captured in the intensity-scale diagrams may not be greatly affected by the inclusion

of uncertainty at the monthly time scale, the skill as measured by the traditional scores, shows more variation.

The scores are plotted in Fig. 10. It is also clear that not all scores show the same level of response. The

trend in the bias in (a) is reasonably consistent and greater than 1, i.e. there are more false alarms than misses.

Again the bias with uncertainty exhibits the same behaviour as seen previously for individual forecasts on the

daily and six-hourly time scale, decreasing with increasing threshold, suggesting that there are progressively

more misses than false alarms relative to the hits. The main effect of the inclusion of uncertainty is therefore

to greatly increase the observed area of rainfall, across all thresholds, and the model does not (rightly or

wrongly) capture this. It hints at the fact that the error in the radar-rainfall estimates is probably not constant

for all thresholds and that, possibly, the model’s perceived skill may be adversely affected if the uncertainty

in the observations is treated equally for all intensities. The ETS in (b) shows that the inclusion of uncertainty
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Fig. 9. Monthly behaviour of the skill score for daily accumulations during June 2004 as determined from the sign test statistic. Shaded
regions show the scales and intensities where the null hypothesis has been rejected. The shading corresponds to the proportion of the scores
that were negative. Panel(a) shows the results without the inclusion of uncertainty and(b) with uncertainty in radar-rainfall estimates
included.

given scale and intensity. This could perhaps be explained
as the “background” error distribution, where if the accu-
mulation was forecast, the errors are prevalent or persistent
over the month. These are confined to the grid scale, or up
to four times the grid scale for accumulations greater than
16 mm.d−1. Lighter shaded regions indicate scales and in-
tensities where theSS was significantly negative some of the
time, and are referred to as “transient errors”. The graphs
suggest that the inclusion of uncertainty has a small impact
on the distribution of the persistent errors. There are some
differences for the transient errors. The lagged threshold-
ing also means that the model can be evaluated at a higher
threshold, which is why the errors with uncertainty span all
rainfall totals up to 64 mm.d−1. The error distribution has
been shifted or redistributed to some extent.

Linking these results to the physical, the persistent errors
at the higher thresholds, and at the grid scale suggest that sub-
grid scale parameterizations such as the convection scheme
still introduce significant errors to the output. Displacement
and timing errors are more due to how well the model cap-
tures the atmosphere’s dynamical evolution. These errors are
clearly discernible on daily and six-hourly intensity-scale di-
agrams. They appear on the monthly diagrams as the grey
shaded regions of transient errors around the black shaded
region of persistent error.

Although the errors as captured in the intensity-scale dia-
grams may not be greatly affected by the inclusion of uncer-
tainty at the monthly time scale, the skill as measured by the
traditional scores, shows more variation. The scores are plot-
ted in Fig.10. It is also clear that not all scores show the same
level of response. The trend in the bias in panel (a) is reason-
ably consistent and greater than 1, i.e. there are more false

alarms than misses. Again the bias with uncertainty exhibits
the same behaviour as seen previously for individual fore-
casts on the daily and six-hourly time scale, decreasing with
increasing threshold, suggesting that there are progressively
more misses than false alarms relative to the hits. The main
effect of the inclusion of uncertainty is therefore to greatly
increase the observed area of rainfall, across all thresholds,
and the model does not (rightly or wrongly) capture this. It
hints at the fact that the error in the radar-rainfall estimates
is probably not constant for all thresholds and that, possibly,
the model’s perceived skill may be adversely affected if the
uncertainty in the observations is treated equally for all inten-
sities. The ETS in panel (b) shows that the inclusion of un-
certainty increased skill for the low and higher accumulation
totals (<4 mm and>=16 mm). This perhaps hints at closing
the gap between the over-estimation of the light rainfall areas
by the model and the under-estimation of the light rainfall ar-
eas by the radar. The confidence intervals obtained using a
bootstrap re-sampling method show the differences are not
statistically significant. Yet whilst the differences in the ETS
may seem small, it is worth bearing in mind that the char-
acteristics of the ETS (see e.g.Mittermaier, 2008) imply that
small changes in the ETS are related to marked differences in
the forecasts. In fact, to achieve a very large (near to 1) ETS
requires a near-perfect forecast, and is therefore very rarely
achieved. The ROC in panel (c) is much smoother for the
monthly sample. The results are rather mixed (as a function
of threshold), with no clear systematic trends in skill. The
log-odds ratio in panel (d) also suggests some differences in
skill but the analytical error suggests the differences are not
significant.
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increased skill for the low and higher accumulation totals (< 4 mm and >= 16 mm). This perhaps hints at

closing the gap between the over-estimation of the light rainfall areas by the model and the under-estimation

of the light rainfall areas by the radar. The confidence intervals obtained using a bootstrap re-sampling method

show the differences are not statistically significant. Yet whilst the differences in the ETS may seem small,

it is worth bearing in mind that the characteristics of the ETS (see e.g. Mittermaier, 2007) imply that small

changes in the ETS are related to marked differences in the forecasts. In fact, to achieve a very large (near

to 1) ETS requires a near-perfect forecast, and is therefore very rarely achieved. The ROC in (c) is much

smoother for the monthly sample. The results are rather mixed (as a function of threshold), with no clear

systematic trends in skill. The log-odds ratio in (d) also suggests some differences in skill but the analytical

error suggests the differences are not significant.
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Fig. 10. Traditional scores for the 24-h accumulations of June 2004:(a) Bias,(b) ETS (with 5% and 95% bootstrap confidence intervals),
(c) ROC and(d) log odds ratio± log odds error. Results for the exclusion and inclusion of uncertainty are shown.

4.3 From six-hourly accumulations

The monthly behaviour of the intensity-scale diagrams ob-
tained for the six-hourly accumulations spanning the first
twenty-four hours of the forecast has also been considered.
As the differences between results with and without uncer-
tainty are small they are not shown.

The traditional scores for the mean six-hourly accumula-
tions for June 2004 are given in Fig.11. Overall the scores
are very similar to the daily ones shown in Fig.10 and dif-
ferences can not be considered to be statistically significant.
There are interesting trends in the evolution of the forecast
skill with lead time that are hidden when analyzing the fields
at the daily time scale. Considering Fig.11a and e, the re-

versal in the behaviour of the bias is still present, which is
essentially a function of the lagged thresholding method and
the large increases in radar rainfall areas. Furthermore the
12–18 h forecast has the best bias, being closest to 1, and
consistent for all thresholds. The inclusion of uncertainty
does affect the evolution of model performance with lead
time. Consider for instance the ETS shown in panels (b)
and (f). (Note that bootstrap confidence intervals have not
been included here for the sake of clarity.) The ETS oscil-
lates with accumulation threshold and the 0–6 h and 6–12 h
forecasts are out of phase. The inclusion of uncertainty has
reduced skill for accumulations less than 2 mm and has in-
creased skill for the larger thresholds, greater than 12 mm.
The ROC in panels (c) and (g) show that uncertainty has
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Fig. 11. Traditional measures (Bias, ETS, ROC and log odds ratio) calculated for the six-hourly accumulations for June 2004. Plots(a) to
(d) show results without the inclusion of uncertainty whereas(e) to (h) include uncertainty.
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reduced both the false alarm and hit rates, shifting the points
down and to the left. The log-odds ratio shown in panels (d)
and (h) also shows oscillatory behaviour especially at 0–6 h
with an increase in skill as well as an extension in the range
of thresholds that can be verified. This is due to the increase
in the radar area with lagged thresholding.

5 Summary and conclusions

Uncertainty in radar-rainfall estimates has an impact on
forecast skill and errors. For the UM, the effect is non-
systematic, in that it may increaseor decrease errors and
skill, depending on the threshold. Some descriptive mea-
sures, such as the bias do show a trend when uncertainty is
included. This effect can be considered to be a function of
the methodology used, and as such, possibly somewhat arti-
ficial. Given this behaviour in the bias, any skill scores that
have a dependence on the bias (e.g. log-odds ratio) may pro-
duce results that could be misleading,if interpreted on their
own. This emphasizes the need foralwaysusing more than
one statistic.

Regardless of the effect, uncertainty ought to be included,
due to the potential downstream impact. The uncertainty
interval used in this study (−50%/+100% implicit) is large
but corresponds to the value frequently quoted in the litera-
ture. More constrained estimates of the error are not widely
available and may not be universally applicable (e.g. different
radar networks and correction algorithms will yield different
error bounds). The results of this study may also suggest that
the “factor-of-two” error used in this study may not be ap-
propriate for all thresholds and that the error varies as a func-
tion of threshold. The method can be applied to other error
bounds, even threshold-varying ones, if such were available.
The only constraint is that the threshold progression for the
intensity-scale method ought to be approximately log-linear.

The inclusion of uncertainty is not enough to gloss over
gross observational errors. When using radar data, one
must have confidence in the data source and the data qual-
ity checks and corrections that have been applied. Otherwise
the (−50%/+100%) interval will not be enough. The inclu-
sion of spurious radar data will cause the results to be badly
skewed.

Intensity-scale diagrams calculated for individual daily
and six-hourly forecasts highlight the errors at the grid scale,
and at longer length scales for large accumulation thresh-
olds. One can potentially differentiate between persistent (at-
tributable to sub-grid scale processes and parameterizations)
and transient errors (attributable to timing errors and differ-
ences in larger-scale dynamic evolution).

For the six-hourly forecasts, the error distribution evolves
only marginally with increasing forecast lead time, but the
skill scores do show a decrease in skill. For June 2004 the 0–
6 h interval performs best for most rainfall thresholds greater
than 2 mm. This could be attributed to the adjustment of the

model moisture fields using the latent heat nudging assimila-
tion scheme (Macpherson, 2001).

The results show that it is necessary to average model out-
put, even if only over two grid lengths. Most UM forecasts
shown here show skill at this scale, based on the skill scores,
but also from the intensity-scale diagrams which show that
many errors are eliminated at this length scale. Sometimes
averaging to 4–8 times the grid length is required. This begs
asking the question whether such an upscaled forecast would
still be useful, even if most of the errors have been elim-
inated. The results also show that single model forecasts
should not be interpreted at the grid scale. There is some ev-
idence to suggest that model verification scores for the low
thresholds improve when uncertainty in the radar-rainfall es-
timates is included. More investigation is required to de-
termine whether this conclusion is robust. Of course these
results are for just one month and one model (UM). Other
models may produce similar but not identical results.

The non-linearity between error and skill has been high-
lighted, and it has been shown that methods such as the
intensity-scale method are complementary to more tradi-
tional measures of skill such as the ETS and log-odds ratio.
Forecasts have errors but these do not make them fundamen-
tally unskillful.

The results shown here are based on “worst case” error
statistics. It is hoped that individual radar networks, includ-
ing the UK network have errors far smaller than this. Yet, ac-
tual error statistics are not readily available. Demonstrating
that NWP models are providing accurate and detailed fore-
casts is becoming increasingly challenging with every resolu-
tion upgrade. Differentiating between model and observation
errors is emerging as an important activity in establishing
whether the higher resolution forecasts are yielding the de-
sired benefits. Radar-rainfall estimates alone can provide the
detailed observations required for verifying high-resolution
(<5 km) model precipitation forecasts. Detailed error statis-
tics are desperately needed. This work has only just begun
and many other avenues of including and quantifying the un-
certainty in the observations we use for verification have yet
to be explored.

Appendix A

Some basic categorical statistics

A 2×2 contingency table is populated by applying a thresh-
old to both observed and forecast fields as follows:

Observed yes Observed no

Forecast yes
a b

hits false alarms

Forecast no
c d

misses correct rejections
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From the contingency table we can calculate many differ-
ent descriptive measures and skill scores. The most common
descriptive measure is the frequency biasB which is defined
as:

B =
a + b

a + c
. (A1)

One of the most frequently used skill scores is the Equitable
Threat Score (ETS), which is defined as:

ETS=
a − ar

a + b + c − ar

where ar =
(a + b)(a + c)

n
. (A2)

The odds ratio is defined as:

OR =
ad

bc
, (A3)

which is often expressed in a log form and has
the advantage of having an analytical error formula,
(1/a+1/b+1/c+1/d)0.5.

The relative operating characteristic (ROC) is a plot of the
hit rate (HR) against the false alarm rate (FAR), and is most
commonly used for evaluating probabilistic forecasts. It can
be used for deterministic forecasts as well where each data
point is the hit rate (HR) and false alarm rate (FAR) for a
given threshold. The interpretation is still the same. The
idea is to minimize the FAR whilst maximizing the HR, thus
concentrating points in the top left corner of the plot domain
(where HR=1 and FAR=0).

HR =
a

a + c
(A4)

FAR =
b

b + d
(A5)

For more information on categorical statistics see texts such
asWilks (2006) or Jolliffe and Stephenson(2003).
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